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Abstract

Simulating learner actions helps stress-test open-ended inter-
active learning environments and prototype new adaptations
before deployment. While recent studies show the promise
of using large language models (LLMs) for simulating hu-
man behavior, such approaches have not gone beyond rudi-
mentary proof-of-concept stages due to key limitations. First,
LLMs are highly sensitive to minor prompt variations, rais-
ing doubts about their ability to generalize to new scenar-
ios without extensive prompt engineering. Moreover, ap-
parently successful outcomes can often be unreliable, either
because domain experts unintentionally guide LLMs to pro-
duce expected results, leading to self-fulfilling prophecies; or
because the LLM has encountered highly similar scenarios
in its training data, meaning that models may not be sim-
ulating behavior so much as regurgitating memorized con-
tent. To address these challenges, we propose HYP-MIX, a
simulation authoring framework that allows experts to de-
velop and evaluate simulations by combining testable hy-
potheses about learner behavior. Testing this framework in
a physics learning environment, we found that GPT-4 Turbo
maintains calibrated behavior even as the underlying learner
model changes, providing the first evidence that LLMs can
be used to simulate realistic behaviors in open-ended interac-
tive learning environments, a necessary prerequisite for use-
ful LLM behavioral simulation.

Introduction

Open-ended interactive learning environments offer unique
educational value by providing tailored and dynamic spaces
where learners can explore, experiment, and construct
knowledge-capabilities (Renkl and Atkinson 2007; Han-
nafin, Land, and Oliver 2013; Land and Jonassen 2012).
However, developing these environments is challenging. It
requires not only the creation of pedagogical content but also
mechanisms to adapt learning experiences for learners with
varying knowledge levels and psychological characteristics
for very large state spaces due to the relatively open-ended
nature of the environments (Kim 2012; Hannafin et al. 2014,
Akpanoko et al. 2024). This complexity necessitates an iter-
ative process in which theoretical best practices are continu-
ously balanced with practical demands (Sandoval 2014).
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LLM-based simulations of learner behavior as a function of
two key attributes of the simulation authoring process: 1)
prompt sensitivity and 2) the extent of environment-specific
handcrafting required during development. High prompt
sensitivity necessitates excessive editing for minor phrasing
changes, thus consuming valuable expert time. On the other
hand, the need for environment-specific handcrafting arises
when an LLM struggles to generalize across learning envi-
ronments, impeding rapid iteration. The proposed approach
of mixing-and-matching expert-hypotheses to define simu-
lation behavior offers a promising balance, enabling authors
to impose necessary constraints while leveraging the advan-
tages of state-of-the-art knowledge and reasoning capabili-
ties of LLMs for “filling in the gaps.”

Simulations of learner behavior have been instrumental
in streamlining the process of developing intelligent sys-
tems for education (Koedinger et al. 2015; Matsuda, Co-
hen, and Koedinger 2015). By allowing developers to rig-
orously test features before full deployment, these simula-
tions reduce reliance on resource-intensive pilot testing in
real-world classrooms (Késer and Alexandron 2023). They
enable developers to identify software issues and evaluate
design choices early, later fine-tuning the environment to
meet learner needs. However, developing simulations during
the cold-start phase is challenging due to the lack of real-



learner data in new environments. This scarcity prevents
purely data-driven approaches, requiring reliance on log data
from similar studies, predictions from learning science the-
ories, instructor experience, and expert intuition (Holstein,
McLaren, and Aleven 2019). Without action logs from the
target demographic, these sources provide the best alterna-
tive for accurate simulations.

Combining these alternative information sources to craft
realistic simulations of learner actions requires a balanced
integration of expert knowledge and automated reasoning.
Fully handcrafted, rule-based simulations offer fine-grained
control but become impractical as complexity increases,
while purely automatic systems may miss critical nuances
(Wang et al. 2024). LLM prompting may potentially strike
an ideal balance, using rich natural language to specify be-
havior while leveraging the LLM’s reasoning capabilities.
This approach holds the potential for flexible, fine-tuned
simulations that effectively bridge the gap between manual
control and automation.

Promisingly, there has been a recent surge in studies that
suggest that LLMs, with their extensive world knowledge
and reasoning capabilities, can accurately predict human re-
sponses to both natural language descriptions of hypotheti-
cal situations and actual experimental setups taken from aca-
demic disciplines like psychology and behavioral economics
(Aher, Arriaga, and Kalai 2023). However, such claims must
be approached with caution. We identify three reasons to
be skeptical of simulations based on large language model
(LLM) prompting reliably generalizing to new situations.

1. LLMs are known to be highly sensitive to small, incon-
sequential changes to the prompt wording (prompt sensi-
tivity) (Sclar et al. 2023; Loya, Sinha, and Futrell 2023b).
As aresult, a simulation that works in one context might
fail with changes to either the description of the learning
environment (corresponding to, say, a new feature that
the developers are planning to add to the environment)
or the learner model (corresponding to refinements in the
expert’s understanding of how learners behave).

LLMs, trained on vast web data, may rely on memoriza-
tion rather than genuine reasoning, limiting their ability
to generalize (Sainz et al. 2023).

. There is no disciplined method to prevent prompt engi-
neers from unconsciously shaping prompts to elicit ex-
pected answers, raising concerns of a Clever Hans!-like
setup, where human cues influence the outcome (Kamb-
hampati 2024).

For the reasons stated above, the usefulness of LLMs for
simulating learner actions beyond single proof-of-concept
experiments has not yet been established. To address this
gap, we introduce a simulation authoring framework that
serves the dual purposes of: 1) systematically evaluating
whether an LLM-based simulator can usefully generalize
to new contexts (e.g., modifications of the original learn-

!The term originates from Hans, a horse in early 20th century
Germany, who seemed to perform arithmetic by tapping his hoof.
It was later found he was responding to subtle cues from his trainer
or the audience.
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ing environment or the original learner model) without re-
engineering the LLM prompt; and 2) establishing a clear
prompting workflow to avoid Clever-Hans-style biases, pre-
venting overestimation of the LLM’s capabilities.

A robust simulator must dynamically adapt to changes
in the simulation context (learning environment or learner
model) without extensive prompt recalibration. Once a
prompt template is calibrated to specific learner behaviors,
this calibration should generalize to new simulation con-
texts, maintaining consistent simulation behavior. This gen-
eralization is important for two reasons: (1) the exponential
increase in experiment runs needed as state variables grow,
and (2) the limited utility of LLM simulations that only pre-
dict behaviors when specifically calibrated, which fails to
generate new insights and merely reproduces existing find-
ings (Clever Hans effect).

Our main contribution with HYP-MIX is a systematic
simulation authoring framework? for incorporating expert
knowledge into LLM-based simulations of learner actions.
Our hypothesis-based framework presents a well-defined,
statistical notion of what it means for the simulation to be
robust and generalizable to new simulation scenarios. Us-
ing our framework, we find that GPT-4 Turbo is capable of
maintaining prompt calibration under changes to the learner
model, indicating that it may already be feasible to simu-
late realistic learner behaviors in learning environments us-
ing frontier LLMs.

Related Work

Simulated Learner Behavior for Authoring Educational
Technologies. Simulated learners streamline the authoring
of intelligent tutoring systems (ITSs), which often require
over 100 hours of work per instructional hour (Blessing and
Gilbert 2008). Tools like SimStudent (Matsuda, Cohen, and
Koedinger 2015) simulate learner behavior to aid in ITS
development via interactive tutoring. However, compared
to ITSs, open-ended interactive learning environments typ-
ically involve more states due to their open-ended and ex-
ploratory nature and a greater emphasis on scaffolding the
affective aspects of learning (Rieber 1996). While Chris-
tensen et al. (2011) simulate psychological aspects of learn-
ers, their method is handcrafted, highly context-specific, and
therefore, would not scale well to complex interactive envi-
ronments. To our knowledge, our work is the first to apply
learner behavior simulations to these environments. Addi-
tionally, Késer and Alexandron (2023) identify a widespread
lack of validation in simulated learner research, which we
address in the HYP-MIX framework by centering on falsifi-
able hypotheses for both authoring and evaluation. Our ap-
proach is also in line with Ainsworth and Grimshaw (2004),
who focus on group-level behavior specification, similar to
our use of distributional hypotheses.

Simulating Human Behavior with LLMs Several recent
works explore the ability of LLMs to simulate human behav-
iors across various contexts, including social platform de-
sign (Park et al. 2022), market research (Brand, Israeli, and

*https://github.com/msamogh/hypmix



Ngwe 2023), and experimental economics (Gui and Toubia
2023). LLMs have also been shown to reflect human-like
cognitive biases in reasoning tasks (Dasgupta et al. 2022;
Ozeki et al. 2024). Most related to our work are studies that
analyze LL.Ms agents’ consistency with provided personal-
ity traits (Frisch and Giulianelli 2024; Jiang et al. 2024) or
character profiles (Xiao et al. 2023). However, in contrast to
these works, we evaluate agent consistency using simple hy-
potheses specifying the statistical relationship between val-
ues of agent (learner) characteristics and behaviors, allevi-
ating the need for fine-grained annotation of individual re-
sponses; and further consider how these simulated behaviors
change in response to changes in the simulation context.

Prompt Sensitivity and Prompt Calibration. Experi-
ments using LLMs rely heavily on natural language prompts
to define personas, situations, and tasks, but LLMs are
highly sensitive to slight variations in prompt text, making
this a critical issue for research (Mohammadi 2024). Loya,
Sinha, and Futrell (2023a) find that ChatGPT exhibits sen-
sitivity to prompt phrasing for decision-making tasks such
as ours. In response, various prompt calibration approaches
have emerged, particularly focusing on reducing the LLMs’
sensitivity to the order of in-context examples (Lu et al.
2022; Zhao et al. 2021). In contrast to this family of work
that focuses on reducing variance between different tem-
plates, in this work we our goal is to test the consistency
of LLM behaviors across different simulation contexts.

The HYP-MIX Framework

The HYP-MIX framework is designed to create and evalu-
ate realistic and scalable simulations of learner behavior by
translating theoretical constructs into concrete, testable pre-
dictions. The unit of authoring and evaluation in this frame-
work is a Marginalized Distributional Hypotheses (MD-
Hyp). These are called “marginal” because they focus on
one learner characteristic at a time, while “marginalizing”
over all other variables. This is essential because, while
it is straightforward to reason about a single characteris-
tic, jointly considering multiple characteristics can quickly
become difficult. For instance, an MDHyp might predict
that low persistence leads to a higher probability of task-
abandonment, focusing specifically on persistence while ac-
counting for other variables in the background. The rest
of this section details the motivation and implementation of
MDHyps, along with its integration with LLM prompting.

MDHyps for Simulation Evaluation

A common method for validating simulated agents involves
presenting the generated behaviors to human crowdworkers,
who then rate the realism of these behaviors either over a
quantitative scale or according to a qualitative rubric (Park
et al. 2023; Jiang et al. 2024). While this approach has been
widely adopted in recent studies, particularly with the prolif-
eration of crowdsourcing platforms, it is fundamentally lim-
ited and ill-suited for evaluating simulated learner actions in
complex, iterative experiments, for several reasons:

1. Cost Constraints: Crowdsourcing becomes pro-
hibitively expensive in iterative studies, particularly
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those requiring extensive experimentation.

. State Space Explosion: As the complexity of the en-
vironment and the number of learner characteristics in-
crease, the task of collecting annotations for every possi-
ble combination becomes infeasible.

. Demographic Mismatch: The typical crowdworker
populace does not include individuals deeply involved
in education, such as researchers or educators (Huff
and Tingley 2015). As a result, they are generally not
equipped to accurately assess the realism of behaviors
exhibited by young learners with specific characteristics.

. Inherent Noise in Learners’ Actions: The stochastic
nature of interactions within learning environments intro-
duces significant noise into the evaluation process. Even
with a sophisticated model of a learner, it is nearly im-
possible to predict with certainty how they will behave in
a given situation, making deterministic point estimates
unreliable.

We propose using MDHyps to evaluate learner behav-
ior simulations at a distributional level, drawing from prior
studies or instructor experience. An MDHyp is a natural
language statement that describes a relationship between a
learner’s characteristic and their probability of taking cer-
tain actions (e.g., “a more persistent learner is less likely
to abandon the task as more time passes”). This relationship
can be tested by analyzing the distribution of outcomes from
multiple simulation runs across different environment states.

MDHyps for Simulation Authoring

The central thesis of the HYP-MIX framework is that MD-
Hyps serve not only as useful tools for evaluating an existing
simulation, but also as powerful building blocks for expert-
authoring LLM-based simulations of learner behavior.

Achieving Mix-and-Match Simulation Authoring with
MDHyps For MDHyps to be effective in prompt-based
simulation authoring, the LLM must demonstrate compo-
sitional generalization (Mannekote 2024). We need MD-
Hyps to function as modular elements that can be easily
added, edited, removed, swapped, and combined to shape
the LLM’s outputs. Similar to SKILL-MIX (Yu et al. 2023),
which tests LLMs’ ability to combine literary and logical
devices to generate free-form text, HYP-MIX tests LLMs’
ability to combine calibrated expert-hypotheses to simulate
learner actions in a “calibrate once, use forever” fashion.
Achieving this, of course, is challenging due to LLMs’ sen-
sitivity to prompt phrasing and requires empirical validation.

Existing Notions of ‘“Calibration” The term “calibra-
tion” carries different definitions across disciplines. In
statistics and machine learning, calibration refers to the
alignment between a model’s predicted probabilities and the
actual observed frequencies of outcomes, ensuring that pre-
dictions accurately reflect real-world occurrences over time
(Bella et al. 2010). In the context of physical measurement
devices, calibration aims to ensure that a measurement de-
vice’s accuracy is consistent. This process involves aligning
the device with a known standard to maintain reliable accu-
racy across future measurements (Castrup et al. 1994). The



HYP-MIX notion of calibration combines the two: we want
the predicted action probabilities from the LLM to align with
the MDHyp (analogous to the statistical notion) and also to
hold this calibration across different hypotheses and changes
in the underlying learner model (analogous to the metrolog-
ical notion).

Holding Calibration Building on this integrated defini-
tion, the ability of an LLM to hold calibration of a prompt
template across simulation contexts is critical for minimiz-
ing the labor-intensive re-engineering of prompt templates
after each modification to the simulation model. By group-
ing hypotheses into hypothesis classes based on similar
functional relationships and linking them to specific statis-
tical tests, we aim to ensure robust calibration, even as the
simulation model undergoes modifications.

Hypothesis Classes A hypothesis class defines a specific
functional relationship that its member-hypotheses posit be-
tween independent variables (e.g., learner persona values,
environment state variables) and a dependent variable (e.g.,
probability mass of specific learner actions). Formally, a hy-
pothesis H; belongs to the hypothesis class H.,ss (denoted
as ¢(H;) = Heiass)- Each hypothesis class is associated with

a prompt template, .15, that its member-hypotheses instan-
tiate by specifying slot values, and is linked to a specific
success criterion T, typically expected to be the result of
a statistical test (e.g., Chi-squared) designed to assess how
well the LLM maintains consistency and accuracy when dif-
ferent instances of that class’s characteristic relationship are
tested (e.g., any relationship that can be expressed in natural
language, such as linear, logarithmic, or piecewise continu-
ous relationships).

Template Calibration Calibration in HYP-MIX applies at
the level of hypothesis classes, where a calibrated prompt
template serves as the operationalization of the class’s sta-
tistical relationships. The process involves iteratively re-
fining the template using well-established prompt engineer-
ing strategies, such as rephrasing instructions to emphasize
critical behavior patterns identified from prior iterations and
clarifying ambiguities. Decisions regarding prompt modi-
fications were grounded in observed discrepancies between
desired and simulated outputs. Successful calibration aims
to ensure that the template—and by extension, the hypoth-
esis class—remains robust across changes to the learner
model, swapped variables, or new member-hypotheses, min-
imizing the need for re-engineering.

Experiments

We test the robustness and generalization capabilities of
GPT-4 Turbo, a state-of-the-art LLM, in the HoloOrbits en-
vironment by assessing how well it maintains calibration
when the learner model is modified.

Learning Environment

We situate our experiments within HoloOrbits (Rajarathi-
nam, Palaguachi, and Kang 2024), an open-ended interac-
tive learning environment designed for teaching Kepler’s
Laws that we use for our experiments (see Figure 2). We
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Figure 2: A screenshot of the original HoloOrbits environ-
ment (Rajarathinam, Palaguachi, and Kang 2024) with the
keypoints annotated.

selected HoloOrbits due to its small, well-defined state and
action spaces, which make it ideal for preliminary experi-
ments. Since our experiments involve a text-based LLM,
we only need a textual description of the learning environ-
ment to feed into the model as a natural language prompt.
An unintended advantage of this approach is that it allows
us to describe learning environments not yet implemented in
software.

Learning Task We particularly focus on the learner’s task
to verify if a given planetary system adheres to Kepler’s
First Law by submitting three equal arithmetic expressions.
These expressions can use any combination of distance mea-
surements between the following points: aphelion (A), per-
ihelion (P), focus 1 (F1), focus 2 (F2), and a fixed point on
the orbit (X). The correct solution involves submitting the
following measurements: (F1-A + F2-A), (F1-P + F2-P),
and (F1-X + F2-X).

State Representation For our experiments, we define a
minimal state representation with ten boolean variables in-
dicating whether the learner has measured the distances be-
tween each pair of points. Additionally, we include two in-
teger variables to track the number of submission attempts
and the time elapsed since the session began, respectively.

Action Space The learner can perform measurements be-
tween any pairs of key points in the planetary system, with
specific actions such as MEASURE-F1-X to measure the dis-
tance between Focus 1 (F1) and a fixed point on the or-
bit (X), MEASURE-A-F1 to measure the distance between
Aphelion (A) and Focus 1 (F1), or MEASURE-A-P to mea-
sure the distance between Aphelion (A) and Perihelion (P).
In addition to these measurement actions, the learner can
submit solutions using SUBMIT(X, Y, Z), where X, Y, and
Z represent arithmetic expressions involving the measured
distances. The goal is for all three expressions to be equal.
The learner also has the option to EXIT at any time.



Initial, Uncalibrated Prompt Template

Lo,y (Hy)

A learner with a higher geometry proficiency is more
likely to make productive measurements (i.e., those
that measure distances between pairs of points in
the planetary system that are potentially useful to
verify if the orbit is elliptical). To make produc-
tive measurements is to make one of the following ac-
tions: MEASURE-F1-X, MEASURE-F2-X, MEASURE-
F1-P, MEASURE-F2-P, MEASURE-A-F1, MEASURE-A-
F2.

Hypothesis
(H; € Hegmy)

HGI € Hmono

Hp1 € Hiono A learner with a higher persistence is less likely to aban-
don the task as the number of measurements increases
(i.e., to prematurely exit the session before submitting
the right solution). To abandon the task as the num-
ber of measurements increases is to make one of the
following actions: EXIT.

Hps € Hmono A learner with a higher persistence is less likely to aban-
don the task as the time elapsed increases (i.e., to pre-
maturely exit the session before submitting the right
solution). To abandon the task as the time elapsed in-
creases is to make one of the following actions: EXIT.
Hego € Huniform  As learners get closer and closer to the lower end of the
geometry proficiency spectrum (value of 1), they are
equally likely to perform the following actions. In other
words, such a learner exhibits a uniform distribution over
these actions: <ALL MEASUREMENT ACTIONS>.

Table 1: Hypotheses used in learner modeling experiments.
Regular text shows the template for each hypothesis class,
with blue indicating specific slot values for each hypothesis.
Updated calibrated prompt templates are in the Appendix.

Learner Model

We represent each learner through a learner model £ =
(C,V, M). C is the set of learner characteristics (e.g., ge-
ometry proficiency, persistence) being modeled. V is the
mapping between each learner characteristic, C; € C, to
its corresponding persona level, V;, of the current learner.
Each V; € V is quantified on a numerical scale (V; €
[1,10]). Finally, each learner characteristic C; is associated
with a learner characteristic model M; € M, which, in
turn, comprises one or more MDHyps.

Learner Characteristics For the HoloOrbits learning en-
vironment, we model learners using persistence (a psycho-
logical factor) and geometry proficiency (which reflects the
learner’s knowledge of the subject matter) with the follow-
ing operating theoretical definitions:

* Persistence: ‘“maintaining a sustained effort toward
completion of a goal-directed task despite challenges
or difficulties” (Anderson 2002; Hilton and Pellegrino
2012)

* Geometry Proficiency: “the ability to apply the knowl-
edge of the properties of common shapes to solve prob-
lems” (Jablonski and Ludwig 2023)

Design of the LLM Prompt for the Simulation The sim-
ulation prompt (Ism) consists of introductory instructions,
a description of the learning environment, current state,
and the learner model (a graphic of the prompt template is
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shown in the Appendix). Furthermore, the prompt template
for each learner characteristic model is a concatenation of
prompt templates of the MDHyps that make up the learner
characteristic model. We also instruct the LLM to perform
Chain-of-Thought reasoning (Wei et al. 2022) before out-
putting the simulated action to strengthen the reasoning and
provide the practitioners with a semblance of the intermedi-
ary steps used to arrive at the output, which can then be used
to refine the simulation.

Approximate Marginalization Testing an MDHyp by
running the simulation over all value-assignments of state
variables S requires an intractable number of LLM calls that
grows exponentially with |S|. To address this, we statisti-
cally approximate the state space by subsampling it. This
approach allows for manageable marginalization while con-
trolling computational costs.

Learner Model Edit Graph: A Case Study

This section details a case study of how we developed a sim-

ulation of learner actions for the HoloOrbits environment

leveraging the HYP-MIX framework. The goal is to demon-
strate how HYP-MIX can evaluate the compositional gen-
eralization capabilities of an LLM (we used GPT-4 Turbo

(Achiam et al. 2023) in our experiments). We focus on

five representative types of edits to the learner model—Ex-

Situ Transfer, Combine Hypotheses, Variable Swap, LC

Swap, and Calibration Regression (defined in detailed in

Figure 3)—which reflect the iterative process a developer

might follow when constructing a learner model. Through-

out development, we use the four MDHyps listed in Table 1.

These modifications are represented via a Learner Model

Edit Graph (Figure 3).

1. Inmitial Hypotheses and Operationalization: We initial-
ize the learner model with two hypotheses: Hgi and
Hp,, both obtained by operationalizing the theoretical
definitions of geometry proficiency and persistence re-
spectively into MDHyps (see Table 1 for all hypothe-
ses used). Both Hgi and Hpp posit monotonic rela-
tionships between variables. We grouped them under
the hypothesis class Hmono- We calibrated fmono using
H¢y as the calibration reference hypothesis and tested
for generalization on Hp;. We define the success crite-
ria function for monotonic hypotheses, Tiono Using the
Spearman correlation coefficient p and its corresponding
p-value P, as follows:

TRUE, if p > 0and P, <0.05
for a monotonically
increasing hypothesis
if p<0Oand P, <0.05
for a monotonically
decreasing hypothesis

otherwise

Tinono (s P») = < TRUE,

FALSE,
(D
For H¢1, Spearman correlation is computed between the

persona value for geometry proficiency and empirical
probability of making a productive measurement.
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learner model “snapshots” after developer edits, listing the MDHyps in each snapshot. Green nodes indicate calibrated snap-
shots; yellow nodes are untested for calibration. Each MDHyp in the learner model is annotated: ‘?’ for untested calibration
status and ‘*’ for confirmed calibration. (1) Ex-Situ Transfer: Tests if a calibrated MDHyp alongside other MDHyps remains
calibrated when tested alone. (2) Combine Hypotheses: Assesses stability of two separately calibrated hypotheses when
combined. (3) Variable Swap: Swaps a single variable within a hypothesis. (4) LC Swap: Evaluates if a prompt template
calibrated for one learner characteristic works for another in the same class. (5) Calibration Regression: Tests stability of a

calibrated hypothesis when a new one is added.

. Variable Swap: After consulting with learning science
experts, we determined that the “Number of Submis-
sions” was a more suitable measure of “challenge” than
“Number of Minutes Elapsed.” This led to a modification
of the original MDHyp for persistence, resulting in a new
hypothesis, Hpo.

. Append: During testing, we observed that learners with
minimal Geometry Proficiency (1/10) were unexpectedly
producing a high percentage (~80%) of productive mea-
surements, contrary to our expectation of a uniform dis-
tribution®. To address this, we introduced Hgo and a
new hypothesis class, Huniform, to explicitly model this
behavior and refine the Geometry Proficiency model, bet-
ter align it with our theoretical expectations. The success
criteria function Tyyiform for the uniform distribution hy-
pothesis is defined using the p-value of a Chi-squared test
P> as follows:

Tuniform(Py2) = TRUE if P> > 0.05 else FALSE  (2)

. Combine Hypotheses: After calibrating the prompt
templates for Hgo and Hpo, we combined these MD-
Hyps into a unified learner model, completing the devel-
opment process.

Results and Discussion

To evaluate whether an LLM supports flexible simulation
authoring in the HYP-MIX framework, the calibration state
of all hypothesis classes must remain intact after a learner
model edit. Specifically, the LLM outputs must continue
satisfying the success criterion function T g,) for each hy-
pothesis H; without altering the associated prompt template,

3We hypothesize this result to be a result of a more general
phenomenon that Aher, Arriaga, and Kalai (2023) refer to as
“hyper-accuracy distortion,” where LLMs struggle to feign igno-
rance about a topic to simulate human behavior.
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I(gr,). This is assessed by comparing Tf,) outputs before
(Pre-Op) and after (Post-Op) the edit operation, across three
distinct action space labelings (e.g., changing EXIT to QUIT)
to account for variability. Each operation in Table 2 is eval-
uated using three rows (details in the Appendix).

For example, consider Hgp, which predicts that the
learner’s probability of making productive measurements
increases monotonically with geometry proficiency. Since

Heg1 € Hionotonic» We calibrate the template /ionotonic USINg
Hg1 until the monotonicity test Tionotonic 1S satisfied. Af-
ter calibrating H1, we modify the learner model by adding
a new hypothesis, Hp1, and reapply Tionotonic t0 Hg1 with
Hp; included in the LLM prompt. We then report whether
fmonownic retains its calibration (see Table 2). This procedure
is repeated for all directed edges in the graph.

Except for the COMBINE operation, where calibration
failed in two of three action spaces, GPT-4 Turbo success-
fully maintained calibration across the other four learner
model edit operations (Table 2). This demonstrates its abil-
ity to generalize to new learner models without requiring
re-calibration in most cases (16 of 18), minimizing man-
ual effort and enabling novel insights. The COMBINE fail-
ures likely stem from increased prompt complexity or inter-
ference between overlapping hypotheses, which challenges
the model’s compositional generalization. Further investiga-
tion is needed to isolate these factors. Nevertheless, GPT-4
Turbo shows strong stability across other multi-hypothesis
operations, underscoring its overall reliability.

While further experimental evidence is needed to gen-
eralize these claims across learning environments, learner
characteristics, and LLMs, our results show promise for us-
ing MDHyps as a unit of simulation-authoring with current
LLM technology. Balancing explicit and implicit authoring
of agent simulations involves deciding which specific agent
behaviors must be defined manually and which can be left
for the LLM to handle automatically. In sensitive domains



Learner Model Success . .
Operation Transformation Criterion tl.’re’-rOp IIl;putls tl"os’tI-‘Opl{np ults }_; (f(;al[l)brat(l)on‘)
. . or Test Results or Test Results el ost-Op?
(Test MDHyp in Bold) Function
P =0.98 P2 =0.98 Held
EX-SITU ? ? Tiniform (P 2) x 1 <
{Hé HEs — {HGo b x P =0.46 P> =0.46 Held
TRANSFER Ea-2 pY 092 P =022 Held
Tnono(s P) p=-0.7,P,=.02 p=-03,P=41 Lost
{Hb,} — {Hby HEo) m("]‘%" pi) #/ p=-0.7,P,=02  Constantseries  Lost
COMBINE 4 p=-07,P=02 p=-06P,=02 | Held
HYPOTHESES Toitorn (Py2) P =0.98 P =0.98 Held
{Hpod — {Hpy, Hpo) (éqm 2)X2 P2 =0.46 P2 =0.46 Held
: P =0.22 P2 =022 Held
p=-08,P<0l p=-08,P,<01  Held
S BLE {Hp,} — {HD,} T'"("g’(”i)P ?)  p=08P<0l p=-08P<0l Held
4 p=-08P,<0l p=-08P,<01 Held
Tomo(p P, P=06E =04 p=-08P,<01  Held
LC SWAP {(H,} — {HL)} i . " p=06P,=04 p=-08P<0l  Held
4 p=07P,=.01 p=-08PFP,<01 Held
=0.6,P,=.04 p=09,P,<7e-6 Held
CALIBRATION . 2 T , P, P o g
REGRESSION [Hg ) — {(HGy, Heo m(()l%(:](pi) = 0.6,P,=.04  p=08/P,<01 | Held
: p=07,P,=01 p=07,P,=.01 Held

Table 2: Results of statistical tests evaluating the impact of different operations on the calibration state of hypotheses within
the learner model. The table compares pre-operation (Pre-Op) and post-operation (Post-Op) results using Chi-squared and
Spearman correlation tests, conducted across three different labelings of the action space for improved reliability. The op-
erations include Ex-Situ Transfer, Combine Hypotheses, Variable Swap, Learner Characteristic (LC) Swap, and Calibration
Regression. For each operation, the table provides the specific hypotheses tested, the applied statistical test, and the resulting
p-values. Bolded hypotheses indicate those tested in both the pre- and post-op phases. Green shading denotes stable test results
(holding calibration), red shading shows a total loss of calibration, and yellow shading indicates that the MDHyp is satisfied
post-operation, though with some degradation in statistical significance.

like education, a bias toward explicit authoring is prudent
(Tian et al. 2024), as LL.Ms struggle with certain reasoning
tasks (Huang and Chang 2022; Kambhampati 2024; Kamb-
hampati et al. 2024). The MDHyps and Learner Model Edit
Graph abstractions offer a foundation for building bench-
mark datasets that evaluate LLM performance across dif-
ferent learner characteristics and multiple learning environ-
ments.

Limitations and Future Work

Our study examines two learner characteristics—geometry
proficiency and persistence—in a single learning environ-
ment. While this limited scope enables targeted insights
and method refinement, it may miss complex, non-linear
relationships that require real learner data for accurate cal-
ibration (Klein-Latucha and Hershkovitz 2024). LLMs-
simulated behaviors help address data scarcity but may
lack the stochasticity and nuanced diversity of real learners.
Expert validation of simulated outputs and benchmarking
against real learner logs, where available, are crucial for mit-
igation. Future work should empirically test the reliability of
HyP-MIiX predictions by comparing them with real learner
behaviors. Additionally, addressing the ethical and practical
challenges of data representativeness is critical for ensuring
broader applicability and trustworthiness of the framework.
Further research could explore alternative LLMs, including
open-source models, and evaluate the HYP-MIX framework
across a wider range of diverse learning environments.
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Conclusion

We present the HYP-MIX framework, which uses Marginal
Distributional Hypotheses (MDHyps) to simulate learner ac-
tions in open-ended interactive learning environments, re-
ducing the cost and time of real-world testing We show that
GPT-4 Turbo maintains calibration across various types of
modifications to the learner model, reducing the need for fre-
quent recalibration and highlighting the potential of LLMs
for behavioral simulation. Our key contribution is a scal-
able method for leveraging LLMs to enhance the adaptabil-
ity of open-ended interactive learning environments. By
addressing prompt sensitivity through modular hypothesis
calibration and compositional generalization, HYP-MIX en-
ables robust, generalizable simulations with minimal re-
engineering effort.
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