
International Journal of Child-Computer Interaction 17 (2018) 61–71

Contents lists available at ScienceDirect

International Journal of Child-Computer Interaction

journal homepage: www.elsevier.com/locate/ijcci

‘‘Alright, what do we need?’’: A study of young coders’ collaborative
dialogue
Jennifer Tsan a,*, Collin F. Lynch a, Kristy Elizabeth Boyer b

a North Carolina State University, Raleigh, NC, USA
b University of Florida, Gainesville, FL, USA

a r t i c l e i n f o

Article history:
Received 10 February 2017
Received in revised form 11 February 2018
Accepted 5 March 2018
Available online 9 March 2018

Keywords:
Computer science
Coding
K-12
Dialogue
Collaboration
Pair programming

a b s t r a c t

Collaboration is a vital part of the discipline of computer science, yet very little is known about how young
children collaborate to learn programming in the classroom. Consequently, we have much to understand
about how we can most effectively support this learning experience. We have conducted a study of fifth
grade students (ages 9–11) in the United States. Students in this study enrolled in an elective computer
science course in which they completed a pair programming project spanning one week of class time
(45 min per day). This article reports on a deep qualitative analysis of six collaborative student pairs. We
examine the ways in which pair programming practices emerge organically within elementary school
collaborations, including the ways in which students’ roles arise, equity of contributions to the dialogue,
and how students manage their responsibilities during the collaborative process. Our results show that
for some student pairs, making suggestions in the dialogue is a natural mechanism for swapping control,
whereas for other students, the transition from ‘‘driver’’ to ‘‘navigator’’ requires substantial scaffolding.
The findings provide insights into the ways in which we can scaffold the collaborative process to support
young students’ computer science learning.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Collaboration during the computer science learning process has
been shown to benefit students inmanyways. It can lead to higher
quality code, increased confidence, and a higher course comple-
tion rate in undergraduate students [1–3]. One popular form of
collaboration in computer science education is pair programming,
in which each student in the pair takes on a role as either driver
or navigator. The driver has control of the keyboard and mouse,
actively constructing and editing code. The navigator observes and
actively seeks to identify errors as they are made, plans ahead to
offer structural suggestions, and asks clarification questions [4].
Programmers switch roles within pair programming sessions, usu-
ally after a specific amount of time or after completing a subtask. In
productive pair programming sessions, both driver and navigator
participate in active discussion and work as a team.

Pair programming has long been studied for its impact on
undergraduates and professionals [5]. However, there is much we
do not know about pair programming for young students1 [6]. In
order to better understand the needs of these young students, we

* Corresponding author.
E-mail addresses: jtsan@ncsu.edu (J. Tsan), cflynch@ncsu.edu (C.F. Lynch),

keboyer@ufl.edu (K.E. Boyer).
1 We refer to children under the age of 14 as young students.

must first understand how they interact with each other, whether
they adhere to beneficial pair programming practices, andwhether
their collaboration leads to successful program development.

This research sheds light on these questions by examining inter-
actions between elementary school-level programming partners
working in pairs within their classroom. Our overarching research
goal is to develop a deeper understanding of how young students
interact with one another during the pair programming process in
order to better support their collaboration in the future. This goal
gives rise to two distinct research questions that we investigate
through our analyses: first, How do young students balance their
dialogue, turn-taking and control while collaborating when learning
to program; and second, How do young students coordinate their
dialogue during collaboration for computer science?. To answer these
questions, we analyzed the students’ dialogue, turn-taking, and
input control as proxies to measure the students’ relationship
balance. We collected a corpus of data including Scratch programs,
planning documents, and video of students’ collaborative process.
We transcribed the videos and annotated individual student ac-
tions to track important behaviors such as keyboard and mouse
control, making and responding to suggestions, and help seeking.
This article examines the results of a quantitative and qualitative
analysis which reveals factors related to the balance of students’
work, such as the total amount of time each student spoke, the
amount of time each student ‘‘drove’’, and the types of dialogue

https://doi.org/10.1016/j.ijcci.2018.03.001
2212-8689/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ijcci.2018.03.001
http://www.elsevier.com/locate/ijcci
http://www.elsevier.com/locate/ijcci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijcci.2018.03.001&domain=pdf
mailto:jtsan@ncsu.edu
mailto:cflynch@ncsu.edu
mailto:keboyer@ufl.edu
https://doi.org/10.1016/j.ijcci.2018.03.001


62 J. Tsan et al. / International Journal of Child-Computer Interaction 17 (2018) 61–71

that the students exchanged. The results show that some student
pairs take turns at the controls naturally and both partners con-
tribute actively to the dialogue,while other pairs resist taking turns
and display an imbalance in dialogue contributions.

2. Background

2.1. Collaboration in computer science learning

The computer science education research community is con-
verging on an understanding that collaboration is central to the
discipline, and that young students should begin developing these
skills early. In the US, the newK-12 Computer Science Framework2
[7] emphasizes seven core practices, one of which is focused on
collaboration.

Pair programming holds the potential to provide students with
rich opportunities to hone the core practice of ‘‘collaborate around
computing’’ as well as a few others such as ‘‘foster an inclusive
computing culture’’, and ‘‘communicate about computing’’. How-
ever, research suggests that successful inclusion, collaboration, and
communication may require significant scaffolding.

For example, in a study of equity in pair programming, re-
searchers analyzed how a pair of girls in a high school elective on
the topic of digital-making positioned themselves via speech and
computer usage [8]. The analysis leveraged positioning theory [9],
in which the roles of agents interacting with one another are
considered fluid and are changed according to the interaction. The
study of girls’ collaboration found that one student established
herself in a more knowledgeable and authoritative position by
speaking more, giving commands, and by maintaining control of
the equipment which was a keyboard and mobile phone [8].

Notable work has emerged in recent years examining the eq-
uity of elementary students’ pair programming relationshipswhile
they solved problems in a summer computer science course [6,10].
The authors analyzed the frequency of the students’ communica-
tion with one another as well as the content of their discussion.
The authors reached the conclusion that equity in a pair program-
ming relationship may be contextualized based on the curriculum,
and inequity may also be the result of some students’ desire to
complete projects quickly. Their curriculum was meant to be self-
paced and may have contributed to students’ focus on completing
the projects quickly in order to move on to other work.

In addition to examining the equity of pair programming re-
lationships, researchers are also interested in the kinds of col-
laborative interactions that occur during puzzle-based computing
environments. Researchers used the validated C-COI (Collaborative
Computing Observation Instrument) [11] to identify types of inter-
action that occurred often between elementary students solving
computing problems. The authors found that when collaborating,
elementary students often talked about the computing problems
they are solving, their achievements when solving the problems,
and other topics unrelated to the problem [12].

Another important factor in collaboration is students’ cultural
background. In a study of Latina and white middle school students
engaging in pair programming, researchers found that the all-
white, all-Latina, and mixed-culture pairs communicated differ-
ently. All-white pairs communicated primarily by speaking while
the all-Latina pairs often used body language [13].

Researchers were curious about how a pair’s friendship influ-
enced their academic outcomes in middle school. They found that

2 This effort was led by the Association for Computing Machinery, Code.org,
Computer Science Teachers Association, Cyber Innovation Center, and National
Math and Science Initiative.

when friends are paired together and if one student is more confi-
dent than the other, then the more confident student’s program-
ming knowledge improves when working with a less confident
partner with more prior knowledge [14].

Research on pair programming at the undergraduate level has
been a topic of interest for several years. Evidence suggests that
when one collaborator starts out more knowledgeable than an-
other, the more knowledgeable peer tends to take control, leaving
the other partner confused or disengaged [15]. Another study
with pairs of undergraduate students conducted in an introductory
computer science course revealed that active participation from
students in both the driver and navigator role was essential to
successful collaboration [16]. In addition, pairs of students who
worked together to resolve their uncertainties collaborated more
effectively than pairs of students whomoved from one problem to
another without reaching a consensus.

Our work adds to the emerging body of knowledge regarding
pair programming for younger students. In addition to dialogue,
we quantify the amount of time spent driving, and we annotate
how students make suggestions, request to switch roles, and ask
for help.

2.2. Learning theory and collaboration

The social constructivist perspective on learning suggests that
learning is a social and interactive process [17]. That perspec-
tive guides much of the current research on collaborative learn-
ing. In groundbreaking work on collaboration, Chi and her col-
leagues [18,19] introduced and expanded on the ICAP (Interactive–
Constructive–Active–Passive) framework, which characterizes
students’ engagement when completing a learning activity. For
example, students who merely listen to a lecture are passive
recipients of information. Students who take verbatim notes or
copy a solution are active. Constructive activities include drawing
concept maps and asking questions. Interactive activities involve
dialogue that builds on a previous contribution, such as defending
and arguing a position. The authors hypothesized that these four
types of activities lie on a spectrum, with passive being the least
effective and interactive being the most effective for learning
because students use critical thinking to form new ideas and build
on their partners’ ideas during interaction. A series of analyses have
provided support for that hypothesis [19].

The benefit of collaboration has been highlighted in many
empirical studies in various domains. For example, Tudge [20]
conducted a study with children ranging from age 5 to age 9
collaboratively working to predict a mathematical balance beam’s
movement. He concluded that the success of the students’ interac-
tions was dependent upon whether they could reach a shared un-
derstanding of the problem, and each student’s level of knowledge.
Kruger [21] studiedGirl Scout troops ranging fromages 7 to 10who
were asked to formmoral arguments. Some of the participants col-
laborated with adults while others collaborated with their peers.
The pairswere given dilemmas andwere instructed to discuss pos-
sible solutions until they came to an agreement. Kruger’s results
showed that the students who worked with their peers formed
more sophisticated arguments than thosewhoworkedwith adults.
Kruger concluded that this was due to the difference between
active and passive listening. Students who worked with adults
were likely to have listened to the adult’s explanations without
discussing their own ideas asmuch as theymight havewith a peer.
Finally, in a study of 4th grade students in a science class, students
were asked to complete a computer-based scientific reasoning task
either individually or in pairs. The pairs developed higher quality
hypotheses than the students who worked individually [22].

On the whole, prior work has established that the amount of
time students spend interacting and talking, rather than being a



J. Tsan et al. / International Journal of Child-Computer Interaction 17 (2018) 61–71 63

Table 1
Identifiers, pseudonyms, and genders of collaborating pairs, along with minutes of
video collected and transcribed/annotated for each pair.

Pair ID Student pseudonyms Gender composition Minutes of video

1 Charlie and Quinn Male, Male 61
2 Ian and Aaron Male, Male 54
3 Adalyn and Catarina Female, Female 62
4 Alonzo and Gigi Male, Female 54
5 John and Mia Male, Female 30a

6 Greg and Harry Male, Male 64

a John andMia’s second videowas lost in the video transfer process, sowe have only
one class period instead of two.

passive use of time, is influential in the success of their collabo-
rative learning [20,21]. It also suggests that taking active part in
the construction of solutions is important [18,19]. Based upon this
prior work, our analysis is centered around the percentage of time
student pairs speak and drive, and on the nature of their dialogue
contributions. The literature that we presented in the prior sub-
section highlighted the importance of talk in collaboration. In this
study we use the amount of talk, turn-taking, and dialogue acts to
understand the balance of the students’ relationships.

3. Method

3.1. Participants

We conducted a study of fifth grade students enrolled in a
computer science elective within an urban elementary school in
the southeastern United States. The school’s student body is 53.1%
African American, 32.6% Caucasian, and 14.3% Hispanic, Latino,
Native American, Asian, or mixed race. In the US, students whose
family earnings fall below a set threshold receive free and reduced-
cost lunches in school, and at our partner school, 47.4% of stu-
dents received free or reduced-cost lunch. The total number of
students who took the elective was 55 (39 males, 16 females). Of
these students, 26 (16 males, 10 females) voluntarily consented to
participate in data collection for this research. No compensation
or course credit was provided for consenting to data collection.
Of the consenting students, we obtained complete videos of 6
pairs (12 students) working on the programming project described
below. Eight of these students were male and four were female.
As is often the case with computer science electives, we saw a
disproportionately high number of male students enrolled in this
course.

Table 1 enumerates the six pairs by gender and provides the
pseudonyms by which we will refer to them throughout this anal-
ysis.

3.2. Classroom context: Computer science elective

The computer science elective course consisted of thirty class
periods, each of which was forty-five minutes long. The class
periods we analyze in this article are referred to as collabora-
tion ‘‘sessions’’. The class was offered to students four times each
school year, and students enrolled at most once per school year.
The course introduced topics including algorithmic thinking and
programming, robotics, artificial intelligence, and computers in
society, all in a way that had been developed and refined to be
age appropriate. The first author of this article co-developed the
course in partnership with the elementary school teacher who led
it. In the class, students designed code in Scratch3 and completed
two programming projects in pairs. Our analysis was conducted

3 https://scratch.mit.edu/.

on video data of the students pair programming during their first
project.

The first project, and the basis of this study, began about
halfway through the class, at which point students had received
instruction on how to use Scratch to construct conditionals and
loops, broadcast and receive signals, and move sprites (visual
entities) in a scene. Students worked on the project for five to
seven days, with the teacher adjusting the duration as needed
based upon the students’ progress. The project was designed to
emphasize cause and effect. The students were assigned to pairs
and were tasked with selecting a fairy tale and writing a program
that simulated two scenes from the fairy tale demonstrating cause
and effect by taking in and adapting to user input. The programs
written also had to be user-friendly and to run consistently.

Before the students could begin programming, they were re-
quired to complete a scaffolded, paper-based design process in
pairs to ensure that they planned out their approach to the problem
and decomposed the task before they began to code. The scaffolded
design activity was handed out on printed sheets and prompted
the students to choose their sprites and backgrounds, identify the
scenes they would program, identify the instances of cause and
effect, draw out decision trees, and write pseudocode in order to
plan the logic of their program.

During project implementation, the students worked together
through pair programming. The class teachermade the pair assign-
ments based upon his own discretion. The teacher generally asked
students to switch roles every ten minutes; however, our research
field notes indicate that there were days in which the teacher only
reminded the students to switch once and did not enforce the
roles. Some pairs did not switch when they were told to do so
while others switched roles regularly. Although it is not necessarily
important for the students to switchwhen directed, this is oneway
to teach good turn-taking habits. In addition, having programmers
switch roles after a specified time is a common approach in pair
programming.

3.3. Data collection

Over the course of the study we collected handwritten and
code artifacts completed by the students, videos of students pair
programming, screen capture videos4 of students programming,
field notes, and responses during pre- and post-interviews. We
attempted to collect videos of all pairs programming, however,
due to technical and logistical difficulties, we were not able to
obtain videos of all pairs in all activities. The six pairs of students
in this study were the only pairs with videos while they were
working on this particular project. Fig. 1 shows an example of one
pair’s completed fairy tale project, submitted by Pair 1, Charlie and
Quinn. They chose to work with the story of Snow White. In this
scene, the witch is asking Snow White whether or not she would
like to eat the apple. The witch’s reaction is based on the user’s
response.

4. Data annotation

In order to address our research questions, we transcribed and
annotated the videos and Scratch programs and brainstorming
documents. We manually transcribed eleven videos of six pairs of
students working on the project. Each video includes both of the
students pair programming for one session. For pairs 1–4 and pair
6 we had videos of two consecutive sessions, and for pair 5 we had
a video of only one session due to technical difficulties.

4 Screen capture videos are video records of everything that occurs on the screen
as the students see it.We captured the videos using screen recording software called
SMART Recorder.

https://scratch.mit.edu/


64 J. Tsan et al. / International Journal of Child-Computer Interaction 17 (2018) 61–71

Fig. 1. Screenshots of the output and code of Charlie and Quinn’s fairy tale project.

Table 2
The dialogue move annotation scheme created by the authors, ordered from most frequent to least frequent per session.

Dialogue move Description Example(s) Avg. counta

Make Suggestion (MS) Student verbally makes a suggestion or contributes an idea ‘‘Click that’’
‘‘Here, how bout the fox’’.

62

Ask Partner for Help (AP) Student verbally asks partner for help ‘‘How do you do it?’’,
‘‘How did you get that?’’

6

Accept (AC) Student verbally accepts or acknowledges partner’s idea or suggestion ‘‘Okay’’ 6

Reject (RJ) Student verbally rejects partner’s idea or suggestion ‘‘No it isn’t’’
‘‘No it shouldn’t’’

2

Ask Other for Help (AO) Student verbally asks someone other than their partner for help ‘‘Mr. Smith!’’ 2

Ask to Drive (D) Student verbally asks to switch roles ‘‘It’s my turn’’
‘‘Let me try’’

2

a The count was the average count per student per session.

During the transcription process, we also annotated non-verbal
events in the video, which student had control of the keyboard and
mouse (was in the role of driver), and we annotated the person to
whom students directed their request for help (each other, another
student, or the teacher). Fig. 2 shows a screenshot of the annotation
software inwhichwe conducted the transcription and annotations
of nonverbal activity. The software allows users to add multiple
tiers of transcriptions and annotations. In this case, each tier is one
streamof data (e.g., the ‘‘keyboard’’ tier is for annotatingwhen each
student is driving).5

Then, in a second round of annotation, we annotated different
categories of dialogue move.6 As shown in Table 2, these tags
capture when a student verbally contributes an idea or makes a
suggestion7 ; when a student verbally accepts their partner’s idea
or suggestion; when a student verbally rejects a partner’s idea or
suggestion; when a student makes a verbal request to drive (we
did not tag for non-verbal requests to drive); when a student asks
their partner to help; andwhen a student asks someone other than
their partner for help. For dialogue moves that did not fit any of
these categories, we marked them as ‘‘Other’’. Examples of these

5 ELAN: https://tla.mpi.nl/tools/tla-tools/elan/.
6 The term ‘‘dialogue move’’ refers to a chunk of speech, and uses the word

‘‘move’’ in the same way as making a ‘‘move’’ on a chess board. Dialogue moves are
sometimes similarly referred to as dialogue turns in the dialogue analysis literature
and as ‘‘turns at talk’’ in conversation analysis literature.We adopt the term ‘‘move’’
to avoid any ambiguity with students taking turns at the controls while driving.
7 We refer to ‘‘contributing an idea’’ as offering any new information that might

help solve the problem, while ‘‘making a suggestion’’ is providing information that
is actionable.

moves include, ‘‘I don’t know’’. and ‘‘Look! Mr. Smith, watch it!’’;
thesemoves do not offer new information, which is important for a
suggestion, nor are they questions about the problem or a request
to switch roles.

The first author annotated the entire dataset. To calculate inter-
rater reliability, we randomly selected 20% of the sessions (3 ses-
sions) for a second researcher to annotate. The agreement was
κ = 0.62, showing substantial reliability [23]. After discussions of
the disagreements, the first author refined her annotations of the
full dataset before proceeding with analyses. (The kappa was not
recomputed.)

5. Results: Talk time, driving time, and consecutive dialogue
moves

First, this section examines the balance of talk time and driving
time in each of the six pairs. Next, it examines consecutive dia-
loguemoves by the same student. Consecutive dialogue is comple-
mentary to talk time because it indicates one student repeatedly
making dialogue moves while the other remains silent. Finally, it
examines the frequency of each dialogue move type across the
pairs. The presentation of these results is followed by a section that
delves more deeply into the collaborations one pair at a time.

5.1. Talk and driving time

Based upon the video annotation, we computed the number
of seconds that each partner spoke (talk time) and the number
of seconds each partner was at the controls (driving time). Fig. 3
displays the percentage of time each partner spoke and drove in

https://tla.mpi.nl/tools/tla-tools/elan/


J. Tsan et al. / International Journal of Child-Computer Interaction 17 (2018) 61–71 65

Fig. 2. Screenshot of the tagging software.

Fig. 3. The percentage of time each partner spoke and drove in each pair.

each pair throughout the sessions, ordered from least balanced to
most balanced overall. The results revealed that some pairs were
balanced in their percentages of driving and talk time, while others
were highly imbalanced. The figure also shows that increased talk
time and increased driving time sometimes went hand in hand,
but often did not. As we will soon show, some students often
chose to talk to themselves as though ‘‘thinking aloud’’ while in
the driving role, significantly increasing their talk time. In contrast,
other drivers spoke infrequently and responded to the navigator’s
dialogue through writing or editing code. Similarly, some students
were highly engaged while serving as navigator, and others con-
tributed little to the dialogue while navigating. We explore these
phenomena in further detail below.

5.2. Consecutive talk

Talk time indicates the duration of time a student spent speak-
ing, but it cannot capture whether that speech was primarily in a
few long moves or in many short moves. Student collaboration is

driven by dialogue and in order to understand their collaboration
process and success, we must understand their dialogue behavior.
To better understand students’ dialogue behavior, we calculated
the average and maximum number of consecutive moves each
student made in their sessions (Table 3). We aggregated the data
of the pairs that had two sessions. Consecutive dialogue moves oc-
curred when one student made repeated dialogue moves without
a partner dialogue move.

In some forms of dialogue, where speech is the only communi-
cationmedium, one person taking two consecutive dialoguemoves
is relatively uncommon [24]. However, in collaborative dialogue
for problem solving, consecutive moves occur regularly because
one or both partners are actively engaged in the task at hand,
which contributes to the collaborative space even if no speech is
contributed [25]. When we see a very high number of consecutive
dialogue moves, however, this can often indicate that either one
partner is disengaged, or the talkative partner is offering speech
that is not intended for dialogue, but as a sort of think-aloud
or narration. We see that phenomenon in our data: Charlie at



66 J. Tsan et al. / International Journal of Child-Computer Interaction 17 (2018) 61–71

Fig. 4. Distribution ofMake Suggestion dialogue moves for each pair.

Table 3
The average and maximum number of consecu-
tive dialogue moves by each partner.

one point made 30 consecutive dialogue moves with no input
from Quinn. Aaron made 19 while paired with Ian, who made at
most 9 consecutive dialogue moves. At the low end, John and Mia
each made at most 6 and 7 consecutive dialogue moves. We will
examine how these consecutive dialoguemove behaviorsmanifest
in the case studies.

5.3. Dialogue move types

As described in Section 4, we annotated each transcribed di-
alogue move with a label indicating its purpose or intent within
the conversation. The most common dialogue move by far was
Make Suggestion (MS), which accounted for 77% of our labeled
moves. (Dialogue moves that were tagged Other were excluded
prior to the analyses presented here. While they contain dialogue
worthy of future exploration, they are beyond the scope of this
article.) Fig. 4 displays the relative frequency of Make Suggestion

for each pair. Generally, comparing this frequency to the talk times
indicated in Figs. 5 and 6 shows a correlation between the two,
which is intuitive. However, there is not such a strong correlation
between the percent of drive time and the percent of suggestions
made. In pair programming, both driver andnavigator shouldmake
suggestions actively, and we did observe this. For example, in Pair
2, Aaron only drove approximately 5% of the time, but he provided
slightly more than 60% of theMake Suggestion dialogue moves.

We examine the other dialogue moves of Ask to Drive (D),
Reject (RJ), Accept (AC), Ask Partner for Help (AP), and Ask
Other for Help (AO) — in Fig. 7. We omit Make Suggestion (MS)
from Fig. 7 because its frequency was so high that it obscured the
differences between the other less frequently occurring moves.

6. Case studies

This section presents excerpts from three of the pairs in order
to gain a deeper understanding of their interactions. We selected
the three case studies to represent imbalanced talk time, imbal-
anced driving time, and balanced talk and driving time. The case
studies are based on the transcribed dialogues, the videos, and a
researcher’s observations in the classroom.

6.1. Imbalanced talk time: Charlie and Quinn (Pair 1)

Charlie and Quinn had fairly balanced driving time, with Charlie
driving approximately 56% of the time, but heavily imbalanced
talking time, with Charlie taking more than 95% of the talk time.
Charlie also had the highest number of consecutive dialoguemoves
of all 12 students, a surprisingly high 30. We found that Charlie
was mostly talking to himself in the video, or at best, talking
without expecting any response from his partner. Quinn did not
reciprocate this behavior, with a maximum of four consecutive
dialogue moves.

In terms ofMake Suggestion (MS) dialoguemoves, Charlie gave
more than three times as many as Quinn gave, with 245 MSs from
Charlie and 73 MSs from Quinn. They had a comparable number
of Accept moves, with 16 and 17 respectively, and each a small
number of Rejects, at 3 and 1. However, this means that Charlie
rejected 3 out of Quinn’s 73 ideas, while Quinn rejected only 1 out
of Charlie’s 245.

In our first video recording, we observed Charlie explaining
the code to Quinn. It appears that Quinn was either absent the



J. Tsan et al. / International Journal of Child-Computer Interaction 17 (2018) 61–71 67

Fig. 5. Correspondence between overall speech time andMake Suggestion speech time for each pair.

Fig. 6. Correspondence between overall speech time andMake Suggestion speech time for each pair.

day before, or that Charlie had chosen to work on the code at
home. In addition to speaking more, Charlie was the first to drive
during both sessions and drove more than Quinn over the span of
both sessions. During the first session Charlie and Quinn seemed
to work fairly well together despite the imbalance in dialogue:
Charlie spoke much more, but Quinn was able to drive about 63%
of the time during that first session and they both contributed
to the project. However, during the second session, Charlie drove
much more (about 74% of the time) and continued to dominate
the conversation. In addition, Charlie seemed to be less receptive

to Quinn’s suggestions when compared to the prior day.8 Overall,
Quinn attempted to offer suggestions, but Charlie was focused on
his trajectory and was reluctant to deviate from his plan.

We selected two excerpts to illustrate the typical interactions
that occurred between the students. In both of the excerpts below,
Charlie was driving. In Excerpt 1 Quinn was watching Charlie
drive when he noticed Charlie making a mistake. Quinn sug-
gested to Charlie that what he was doing was incorrect [04:38].

8 The recordings were collected on contiguous days.



68 J. Tsan et al. / International Journal of Child-Computer Interaction 17 (2018) 61–71

Fig. 7. Dialogue move frequencies from student pair programming sessions. AP — Ask Partner for Help; AC — Accept Suggestion; RJ — Reject Suggestion; AO — Ask Other for
Help; D — Request to Drive.

Charlie rejected the suggestion [04:40] and Quinn reiterated his
protest [04:41].9 Then, Charlie vehemently argued, ‘‘. . . yes they
do!’’[04:42]. A few seconds after the argument subsided, Quinn
became quiet and Charlie realized his partner was correct [04:50].
Charlie decided to amend the project, narrating it as he did so
[04:52].

Excerpt 1 (Driver: Charlie, Navigator: Quinn):
[04:38] Quinn: They don’t need to be down there. [MS]
[04:40] Charlie: Yeah, they do. [RJ]
[04:41] Quinn: I don’t (()). [MS]
[04:42] Charlie: (()) yes, they do! [RJ]
[04:45] Quinn: It’s the other one. [MS]
[04:47] Charlie: They need to be down here for this backdrop. [MS]
Charlie looks at the code, realizing he was incorrect.
[04:50] Charlie: No they don’t. [MS]
[04:52] Charlie: That’s why I’ma switch it. [MS]

Excerpt 2 occurred closer to the end of the session. Quinn was
fairly quiet throughout the session but he had an idea and wanted
to show it to Charlie. Quinn requested to drive [23:28] and Charlie
handed him the keyboard and mouse after completing his cur-
rent task [23:50]. Immediately upon handing over the controls,
Charlie asked Quinn what he was doing and then after only a
few seconds, told him that the solution wouldn’t work [24:08].
Quinn gave back the keyboard andmouse, and Charlie narrated his

9 (()) is used in place of inaudible speech. http://fave.ling.upenn.edu/downloads/
Transcription_guidelines_FAAV.pdf.

unwinding of Quinn’s suggestion, ‘‘Fix. That doesn’t work’’[24:11].
Both excerpts illustrated Charlie’s dominance and unwillingness to
discuss Quinn’s ideas before rejecting them.

These excerpts also illustrate the contrast between the stu-
dents’ navigation behaviors. Quinn filled the navigation role well,
watching his partner build the project while pointing out when
there was a problem. He showed that he was thinking ahead in Ex-
cerpt 2when he requested to switch roles in order to implement an
idea. When filling the navigator role, Charlie continued to control
the direction of the project by directing his partner. He also showed
signs of impatience after working as a navigator for a very short
amount of time, asking multiple times whether or not the teacher
wanted the students to switch again.

Excerpt 2 (Driver: Charlie, Navigator: Quinn):
[23:28] Quinn: Hold on, let me just. [D]
[23:31] Charlie: There, let me just show you. (()) [O]
[23:50] Charlie: Okay, what’re you gonna do? [O]
Charlie hands over the controls.
[24:03] Charlie: What’re you doing? [O]
[24:08] Charlie: Ugh, that doesn’t work. [O]
Quinn hands back the controls.
[24:11] Charlie: Fix. That doesn’t work. [O]

6.2. Imbalanced driving time: Ian and Aaron (Pair 2)

Ian and Aaron had the most highly imbalanced driving time,
with Ian drivingmore than 95% of the time. Theywere also the least

http://fave.ling.upenn.edu/downloads/Transcription%5Fguidelines%5FFAAV.pdf
http://fave.ling.upenn.edu/downloads/Transcription%5Fguidelines%5FFAAV.pdf


J. Tsan et al. / International Journal of Child-Computer Interaction 17 (2018) 61–71 69

balanced in talk time, but in the opposite direction: Ian talked 32%
of the time to Aaron’s 68%. Although Aaron was not given many
opportunities to drive, he fulfilled the role of an active navigator
well, offering suggestions and asking questions, which led to his
higher proportion of talk time. Aaron made up to 19 consecutive
dialoguemoves, andmademore than 60% of theMake Suggestion
dialogue moves in that session.

In the first session we recorded, neither Ian nor Aaron seemed
to notice the teacher giving the cue to switch, and they seemed
content with Ian driving the entire time. However, in the second
session, both the teacher and Aaron were more insistent about
switching roles. Although Aaron did drive for a small portion of
the second session, he did not drive for long, making just a couple
of changes each time. This pair saw the highest count of Request
to Drive moves among all pairs, with Aaron asking nine times to
drive. It appears that most of the requests to switch were ignored,
as Aaron drove less than 5% of the time.

Aaron was clearly the more talkative of the two, with close
to double the talk time of Ian. Ian occasionally asked Aaron for
help, 14 times over the two sessions, and otherwise worked in-
dependently with determination. Ian usually did not verbally ac-
knowledge Aaron’s suggestions; however, he did verbally accept
11 of them, and through the videos we can see that Ian generally
accepted his partner’s ideas through his work in the code.

Excerpt 3 is an example of how Ian showed a preference to-
wards working individually. This excerpt was from the first ses-
sion. Ian was the driver and Aaron was the navigator. Aaron had
fulfilled the role of the navigator well, by giving suggestions and
asking questions. Prior to [26:47] Ian had responded to Aaron’s
suggestionswith ‘‘I know’’ three times. Although he acknowledged
Aaron’s ideas, Ian’s responses indicated that he knew what he was
doing and he didn’t need help. Aaron also stated that he knew
what to do [26:57], which Ian indirectly rejected by stating that
he too knew what to do [26:58]. Aaron expressed confusion at
Ian’s response [27:01], then said ‘‘Let me help you’’ [27:04]. After
this insistence, Ian at least engaged in one contentful exchange,
answering a question [27:15].

Excerpt 3 (Driver: Ian, Navigator: Aaron):
[0:26:47] Aaron: Move to two hundred. [MS]
[0:26:53] Aaron: Go to the house button. [MS]
[0:26:55] Ian: One second. No (()) I know. [AC]
[0:26:57] Aaron: Wait, I know what to do. [O]
[0:26:58] Ian: I know what to do. [O]
[0:27:01] Aaron: What? [O]
[0:27:04] Aaron: Let me help you. [O]
[0:27:05] Aaron: Click the home button. [MS]
[0:27:09] Aaron: It in. Is- it does not say. Okay, why do you have the
when clicked there?

[AP]

[0:27:15] Ian: So it will turn back after fox touches. [MS]
[0:27:18] Aaron: Don’t you think (()) that you should put those three
together?

[MS]

[0:27:20] Ian: No, (()). [RJ]

During the second session, Aaron was more assertive andmade
requests to drive. Excerpt 4 illustrates Ian’s unwillingness to relin-
quish control of the keyboard and mouse. While Ian was driving,
Aaron had an idea and asked to use the mouse to try out the idea.
Ian stated that he would like to try one thing first. Ian continued
to work for another minute despite Aaron’s persistent requests to
drive.

Excerpt 4 (Driver: Ian, Navigator: Aaron):
[07:45] Aaron: Wait, can I try something? [D]
[07:47] Ian: I’m just gonna try one thing. [O]
[07:52] Ian: Where did he go? [AP]
[07:53] Aaron: He’s under the house. [MS]
[07:55] Ian: Right here? [AP]
[07:58] Aaron: I wanna try something. Where’d the pig go? [D]

6.3. Balanced talk and driving time: Adalyn and Catarina (Pair 3)

Adalyn and Catarina were balanced in terms of drive and talk
time, with 49.9% and 50.1% talk time per partner and 47.6% and
52.4%drive timeper partner. Although theyhad a balanced talk and
driving distribution, they often were not speaking to each other.
Catarina often spoke to the teacher to ask him for help, and Adalyn
spoke to herself at times. This distinctionhighlights the importance
of considering several metrics of collaboration success, equal talk
time still may not indicate that the students were functioning in a
healthy partnership.

We see further evidence of this dynamic inAdalyn’s consecutive
dialoguemoves, there were as many as 17, and Catarina’s, as many
as 13. This metric indicates a lower degree of give-and-take than
we would hope to see in a balanced collaboration. Catarina con-
tributed slightly more through Make Suggestion dialogue moves,
with 101 from Catarina and 83 from Adalyn.

When she needed help, Catarina frequently turned to the teac
her. Catarina asked Adalyn a question 20 times, but asked others a
question 18 times. This nearly 1:1 ratio is much higher than the 3
to 1 ratio of partner vs. other that we usually observed.

Excerpt 5 took place during the second session that we record
ed. After testing out her code, Catarina realized it was not working
as expected. She stopped driving and called out to the teacher for
help [05:31, 05:45]. Adalyn took control of the mouse and key-
boardwhile Catarina remained focused on getting the teacher’s at-
tention [06:00]. While Adalyn drove, Catarina watched the screen
and after a while, Catarina seemed to realize something [06:14].
She then said, ‘‘No. No, no, no’’. [06:24] and took the keyboard and
mouse back from her partner saying, ‘‘Gimmie this’’. [06:29]. In
this case, Catarina had given up after encountering a problem, and
began waiting for the teacher. Her partner resumed active work in
themeantime, butwhenCatarina noticed a bug, rather thandiscuss
it from her navigator role, Catarina seized control. The pair did
not discuss the problems or possible solutions; instead, they both
focused on the screen and their own ideas, trying to work through
their confusion independently.10

Excerpt 5 (Driver: Catarina, Navigator: Adalyn):
[05:31] Catarina: See, it’s not moving Mr. Smith. [AO]
[05:45] Catarina: Mr. Smith. [AO]
Catarina stops driving.
[05:59] Adalyn: (()) [O]
[05:59] Catarina: Mr. Smith. [AO]
Adalyn begins driving by grabbing the mouse.
[06:00] Adalyn: [singing](())[\singing] [O]
[06:14] Catarina: Oh, that’s because I’m on the um. [MS]
[06:24] Catarina: No. No, no, no. [O]
[06:29] Catarina: Gimmie this. [D]
Catarina takes the keyboard and mouse.

7. Discussion

Our overarching goal in this work was to develop a better
understanding of how students work together during the pair
programming process in order to better support their collaboration
in the future. To work towards this goal we investigated and
answered two research questions, How do young students balance
their dialogue, turn-taking and control while collaboratingwhen com-
pleting programming activities?, and How do young students coor-
dinate their dialogue during collaboration for computer science? We
answered the first research question by using talk time and driving
time as proxies for relationship balance.We reviewed the students’
talk and driving time to determine whether they were balanced or
imbalanced in each pair and we found that most of the pairs in our

10 [singing][\singing] indicates the student was singing.



70 J. Tsan et al. / International Journal of Child-Computer Interaction 17 (2018) 61–71

dataset were not balanced according to thesemeasures. In order to
answer the second research question, we annotated the students’
utterances from transcriptions of their pair programming patterns
and we found that the most common type of utterance was Make
Suggestion. Additionally, we found that some pairs of students
accepted more suggestions than others and certain pairs asked
their peers and teachers for help more than they asked each other.

These analyses of elementary school students’ collaborative
pair programming dialogues revealed several patterns that provide
useful insights aswework towards designing effective supports for
collaborative activities for young students.

First, we observed that a discrepancy in preparation influences
the tone of the collaboration. Our case study of Charlie and Quinn
revealed that Charlie had already worked ahead, either because
Quinn had been absent or because Charlie had the resources to
work on the project at home. This inequality only grew as Charlie
and Quinn worked together. Alonzo and Gigi (Pair 4) had a similar
dynamic: Alonzo appeared to have completed some of the work
outside of class, and although Gigi drovemore (63% of the recorded
time), their collaboration was characterized by Alonzo dictating to
Gigi what she should do, and by asking to drive six timeswhile Gigi
asked once. Despite this imbalance, Alonzo and Gigi actively asked
each other questions, both with more than twice the frequency of
Charlie and Quinn. Gigi also retained agency over the collaborative
process, rejecting six of Alonzo’s suggestions and accepting eight
while he rejected only two of hers and accepted twelve. From
the interactions between students in our dataset, it appears that
when two students in a partnership have contrasting levels of
preparation, they cope with the discrepancy in different ways and
with varying degrees of success. While pairing students by similar
skill or motivation level may mitigate this issue, in a classroom
it is not possible to guarantee equal partnerships all of the time.
Fostering effective strategies for collaboration between students
with different levels of coding experience or skill is a crucial area
for future research.

Next, there are specific dialogue strategies which may bear
fruit for young computer science students. First, the case of Ian
and Aaron in Pair 2 highlights a strategy with particularly strong
potential: when faced with a partner who was resistant to involve
him, Aaron adopted a strategy of self-advocacy, finally stating
bluntly, ‘‘Let me help you’’. In fact, Aaron did not have a solution
to offer, but rather, questions that helped to further the goals of
the pair. His insistence succeeded (albeit briefly) in engaging Ian
in more substantive dialogue. Another example of self-advocacy,
coupled with awareness of what he needed during the collabo-
ration process, occurred with Alonzo and Gigi (Pair 4). Gigi was
impatient to finish a subtask and said, ‘‘What-whatever, (()), just
pick one’’. A few moments later Alonzo replied, ‘‘Alright, wait. I’m
tryin’ to think ofwhatweneedbruh’’. He advocated for time that he
needed, when his partner was trying to rush. Alonzo immediately
followed that upwith another dialoguemove, a portion of which is
the namesake for this paper: ‘‘Alright, what dowe need? An animal
noise, right?’’

In contrast to Ian and Aaron’s successful strategies, we can
infer that a strategy not used by Quinn in Pair 1 might have led
to a different outcome than the argument that actually ensued.
When faced with a partner who was not inclined to listen to him,
Quinn stated his ideas as facts, which may have heightened the
confrontational tone of the discussion. If Quinn had instead asked
Charlie a question that required Charlie to reason through the bug
he had introduced into the program, for example, ‘‘What would
happen if youmove it down there?’’, the outcome of that exchange
may have been different. The cases of self-advocacy and strategic
question-asking are just two examples of the dialogue strategies
that young students need to develop in order to foster thriving,
productive collaboration when programming. Strategies like these

are essential in many forms of collaboration. In computer science,
which in many parts of the world is still severely lacking in gender
and racial/ethnic diversity [26], good collaboration strategies have
the particularly important potential to increase equity and broaden
participation.

While these case studies have focused primarily on the content
of the dialogues and not on the overall quality of the code pro-
duced, it is worth noting the outcome of their collaborations in
terms of producing a project that met the teacher’s expectations
and used the computer science concepts that were targeted. Sev-
eral of these student pairs produced programs that largely worked,
turning well-known fairy tales into a program that adapts to user
input. For example, Ian and Aaron (Pair 2) scored a 100% on their
fairy tale project: their program prompted the user correctly and
used the necessary selection logic to adapt based on the user’s
input. Pair 1, despite Charlie’s dominance of the conversation and
his heated exchange with Quinn, scored 80% on their project.
Alonzo and Gigi (Pair 4) and Mia and John (Pair 5) both achieved
a 60% project score. Two pairs struggled noticeably to ultimately
meet the project specifications: Adalyn and Catarina (Pair 3), who
displayed themost balanced drive and talk time, but relied heavily
on the teacher to help them rather than working together, scored
only 40%, and the pairwith the lowest quality projectwas Greg and
Harry (Pair 6) who scored 20%. While they were very engaged and
excited while working on their project, they did not meet many of
the project requirements: they only had one instance of cause and
effect, their interface did not instruct the user on how to use the
program, and their program did not run consistently.

7.1. Implications for additional research

Research in coding and computer science learning for children
is in its early stages. Our research highlights two open research
questions for the community to explore in the future.

How canwe foster good dialogue practices for young students
collaborating when learning computer science? Years of research
in various domains have contributed to an emerging set of best
practices for collaborating when learning computer science: col-
laborators benefit from self-explanation [27], question asking [28],
discussing the challenges of the task rather than criticizing each
other [29], and building upon each others’ ideas to establish com-
mon ground [30]. Without scaffolding or instruction, young stu-
dents do not necessarily follow good dialogue practices for collab-
oration,whichmayhinder the success of their collaborative efforts.
To promote improved collaboration in young computer science
students, researchers should investigate strategies for teaching
and facilitating students to engage in collaborative dialogue. It
is still an open question how we can support young students
in developing these and other beneficial collaborative dialogue
practices. How can we foster an appreciation for inclusion and
engagement in collaborative learning for computer science? Pair
programming requires sharing: students must take turns with the
controls, exchange ideas, and mutually hold responsibility. With
young students, the resistance to sharing when faced with such
an inherently collaborative activity can lead to conflict, and it
is a nontrivial proposition to impart to students an appreciation
for each other’s contributions. The collaborative process could
potentially be improved based on traits of individuals in the pairs
(i.e. personality, experience, friendship). In fact, this finding is not
unique to children: it has been observed in undergraduates as
well [5]. The research community should tackle the tremendous
challenge of identifying innovative approaches that develop chil-
drens’ appreciation for inclusion and engagement in collaboration.
From our results and from previously published work, we suggest
that when conducting research on pair programming, researchers
should ensure that students are trained in their roles. While this
may not necessarily force them to be inclusive and engaged, it will
help with sharing, which may lead to students understanding the
benefits of collaboration.



J. Tsan et al. / International Journal of Child-Computer Interaction 17 (2018) 61–71 71

8. Conclusion

Many decades of research have established that collaboration
is an essential component of learning. For computer science in
particular, collaborative practices are central to the practice and
learning of the discipline. In a study of fifth grade students pair
programming in a computer science elective, we have examined
talk time, ‘‘driving’’ time, consecutive dialogue moves, contribu-
tions of ideas, and other types of dialogue moves. We have seen
that pairs vary tremendously in their balance of talk and control,
and that depending upon their approaches to the challenges they
face, they often achieve varying degrees of success. Strategies for
self-advocacy and question-asking may be particularly important
for the success of collaborative dialogues for computer science, as
are strategies for succeeding in the face of contrasting levels of
prior experience among partners.

These findings shed light on the pair programming processwith
young students and highlight important questions for the research
community to address. The collaborative process for young stu-
dents is highly complex, and this article has only examined a few
of its dimensions. In addition to examining students’ speech and
driving patterns, it is important for futurework to conduct detailed
task analysis of concepts and problems used in code, aswell as how
students decompose tasks. Additionally, rich nonverbal commu-
nication occurs in these collaborations, and we must examine it
through modalities such as physical gestures, eye gaze, and facial
expression.

By gaining insight into the collaborative practices of young
students, we can identify strategies that are most beneficial to
them, and work towards scaffolding that helps children achieve
their full potential in collaborative learning.

Acknowledgments

This work is supported in part by the Wake County Public
School System, the National Science Foundation through Grant
CNS-1453520, Grant DRL-1721160, and Google through a CS Ca-
pacity Research Award.

References

[1] G. Braught, T. Wahls, L.M. Eby, The case for pair programming in the computer
science classroom, ACM Trans. Comput. Educ. 11 (1) (2011) 2.

[2] A. Cockburn, L. Williams, The costs and benefits of pair programming, in: G.
Succi, M. Marchesi (Eds.), Extreme Programming Examined, Addison–Wesley
Publishing Co., Reading, MA, USA, 2000, pp. 223–247.

[3] C. McDowell, L.Werner, H. Bullock, J. Fernald, The effects of pair-programming
on performance in an introductory programming course, ACM SIGCSE Bull.
34 (1) (2002) 38–42.

[4] L. Williams, R.L. Upchurch, In support of student pair-programming, ACM
SIGCSE Bull. 33 (1) (2001) 327–331.

[5] L. Williams, D.S. McCrickard, L. Layman, K. Hussein, Eleven guidelines for
implementing pair programming in the classroom, in: Proceedings of the Agile
2008 Conference, IEEE, 2008, pp. 445–452.

[6] C.M. Lewis, N. Shah, How equity and inequity can emerge in pair program-
ming, in: Proceedings of the 11th International Computing Education Research
(ICER) Conference, ACM, 2015, pp. 41–50.

[7] K-12 computer science framework, 2016. URL http://k12cs.org/wp-content/
uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf.

[8] E. Deitrick, R.B. Shapiro, B. Gravel, How do we assess equity in programming
pairs? in: Proceedings of the 12th International Conference of the Learning
Sciences, ICLS, 2016, pp. 370–377.

[9] L.V. Langenhove, R. Harré, Introducing Positioning Theory, in: L.V. Langenhove,
R. Harré (Eds.), Blackwell Publishing, Oxford, 1999, pp. 14–31.

[10] N. Shah, C. Lewis, R. Caires, Analyzing equity in collaborative learning situ-
ations: A comparative case study in elementary computer science, in: Pro-
ceedings for the 11th International Conferences of the Learning Sciences, ICLS,
2014, pp. 495–502.

[11] M. Israel, Q.M.Wherfel, S. Shehab, E.A. Ramos, A.Metzger, G.C. Reese, Assessing
collaborative computing: development of the Collaborative-Computing Ob-
servation Instrument (C-COI), Comput. Sci. Educ. 26 (2–3) (2016) 208–233.

[12] M. Israel, Q.M. Wherfel, S. Shehab, O. Melvin, T. Lash, Describing elemen-
tary students’ interactions in K-5 puzzle-based computer science environ-
ments using the Collaborative Computing Observation Instrument (C-COI),
in: Proceedings of the 13th International Computing Education Research
(ICER) Conference, ACM, 2017, pp. 110–117.

[13] O. Ruvalcaba, L. Werner, J. Denner, Observations of pair programming: varia-
tions in collaboration across demographic groups, in: Proceedings of the 47th
Technical Symposium on Computing Science Education, SIGCSE, ACM, 2016,
pp. 90–95.

[14] L. Werner, J. Denner, S. Campe, E. Ortiz, D. DeLay, A.C. Hartl, B. Laursen, Pair
programming for middle school students: does friendship influence academic
outcomes? in: Proceeding of the 44th Technical Symposium on Computer
Science Education, SIGCSE, ACM, 2013, pp. 421–426.

[15] G. Braught, J. MacCormick, T. Wahls, The benefits of pairing by ability,
in: Proceedings of the 41st Technical Symposium on Computer Science Edu-
cation, SIGCSE, ACM, 2010, pp. 249–253.

[16] F.J. Rodríguez, K.M. Price, K.E. Boyer, Exploring the pair programming process:
Characteristics of effective collaboration, in: Proceedings of the 48th ACM
Technical Symposium on Computer Science Education, SIGCSE, 2017, pp. 507–
512.

[17] A.S. Palincsar, Social constructivist perspectives on teaching and learning,
Annu. Rev. Psychol. 49 (1) (1998) 345–375.

[18] M.T.H. Chi, Active-constructive-interactive: A conceptual framework for dif-
ferentiating learning activities, Top. Cogn. Sci. 1 (1) (2009) 73–105.

[19] M.T. Chi, R.Wylie, The ICAP framework: linking cognitive engagement to active
learning outcomes, Educ. Psychol. 49 (4) (2014) 219–243.

[20] J.R.H. Tudge, Processes and consequences of peer collaboration: a Vygotskian
analysis, Child Dev. 63 (6) (1992) 1364–1379.

[21] A.C. Kruger, The effect of peer and adult-child transactive discussions onmoral
reasoning, Merrill-Palmer Q. 38 (2) (1992) 191–211.

[22] S.D. Teasley, The role of talk in children’s peer collaborations, Dev. Psychol.
31 (2) (1995) 207–220.

[23] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical
data, Biometrics 33 (1) (1977) 159–174.

[24] A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates, D. Jurafsky, P. Taylor, R.
Martin, C. Van Ess-Dykema, M. Meteer, Dialogue act modeling for automatic
tagging and recognition of conversational speech, Comput. Linguist. 26 (3)
(2000) 339–373.

[25] B. Barron, When smart groups fail, J. Learn. Sci. 12 (3) (2003) 307–359.
[26] S. Zweben, B. Bizot, The 2015 Taulbee survey, Comput. Res. News 28 (5) (2016)

2–60.
[27] M.T. Chi, N. Leeuw, M.-H. Chiu, C. LaVancher, Eliciting self-explanations im-

proves understanding, Cogn. Sci. 18 (3) (1994) 439–477.
[28] C.P. Rosé, J.D. Moore, K. VanLehn, D. Allbritton, A comparative evaluation of

socratic versus didactic tutoring, Proc. Cogn. Sci. Soc. (2001) 869–874.
[29] B. Weiner, The role of affect in rational (attributional) approaches to human

motivation, Educ. Res. 9 (7) (1980) 4–11.
[30] C.B. Cazden, S.W. Beck, Classroom discourse, in: A.C. Graesser, M.A. Gernsbac

her, S.R. Goldman (Eds.), Handbook of Discourse Processes, Lawrence Erlbaum
Associates, Mahwah, New Jersey, 2003, pp. 165–197.

http://refhub.elsevier.com/S2212-8689(17)30038-7/sb1
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb1
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb1
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb2
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb2
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb2
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb2
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb2
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb3
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb3
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb3
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb3
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb3
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb4
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb4
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb4
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb5
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb5
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb5
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb5
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb5
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb6
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb6
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb6
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb6
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb6
http://k12cs.org/wp-content/uploads/2016/09/K%25E2%2580%259312-Computer-Science-Framework.pdf
http://k12cs.org/wp-content/uploads/2016/09/K%25E2%2580%259312-Computer-Science-Framework.pdf
http://k12cs.org/wp-content/uploads/2016/09/K%25E2%2580%259312-Computer-Science-Framework.pdf
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb9
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb9
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb9
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb11
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb11
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb11
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb11
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb11
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb12
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb12
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb12
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb12
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb12
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb12
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb12
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb12
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb12
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb13
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb13
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb13
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb13
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb13
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb13
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb13
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb14
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb14
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb14
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb14
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb14
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb14
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb14
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb15
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb15
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb15
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb15
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb15
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb17
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb17
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb17
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb18
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb18
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb18
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb19
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb19
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb19
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb20
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb20
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb20
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb21
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb21
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb21
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb22
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb22
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb22
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb23
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb23
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb23
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb24
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb24
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb24
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb24
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb24
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb24
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb24
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb25
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb26
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb26
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb26
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb27
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb27
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb27
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb28
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb28
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb28
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb29
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb29
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb29
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb30
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb30
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb30
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb30
http://refhub.elsevier.com/S2212-8689(17)30038-7/sb30

	``Alright, what do we need?'': A study of young coders' collaborative dialogue
	Introduction
	Background
	Collaboration in computer science learning
	Learning theory and collaboration

	Method
	Participants
	Classroom context: Computer science elective
	Data collection

	Data annotation
	Results: Talk time, driving time, and consecutive dialogue moves
	Talk and driving time
	Consecutive talk
	Dialogue move types

	Case studies
	Imbalanced talk time: Charlie and Quinn (Pair 1)
	Imbalanced driving time: Ian and Aaron (Pair 2)
	Balanced talk and driving time: Adalyn and Catarina (Pair 3) 

	Discussion
	Implications for additional research

	Conclusion
	Acknowledgments
	References


