
The Interface Design of a Collaborative Computer Science
Learning Environment for Elementary Aged Students

Amanda Bradbury1, Eric Wiebe1, Jessica Vandenberg1, Jennifer Tsan1, Collin Lynch1, Kristy Boyer2
 North Carolina State University1 and University of Florida2.

There is a currently a shortage of computer science professionals and this shortage is projected to continue
into the foreseeable future as not enough students are selecting computer science majors. Researchers and
policy-makers agree that development of this career pipeline starts in elementary school. Our study
examined which collaborative programming setup, pair programming (two students collaborate on one
computer) or side-by-side programming (two students collaborate on the same program from two
computers), fifth-grade students preferred. We also sought to understand why students preferred one
method over the other and explored ideas on how to effectively design a collaborative programming
environment for this age group. Our study had participants first engage in five instructional days,
alternating between pair and side-by-side programming, and then conducted focus groups. We found that
students overwhelmingly preferred side-by-side programming. We explain this using self-determination
theory which states that behavior is motivated by three psychological needs: autonomy, competence, and
psychological relatedness which side-by-side programming was better able to meet.

INTRODUCTION
Computer science and information technology

occupations are expected to grow by 13% between 2016 and
2026; however, current estimates suggest we may not have
enough skilled workers to fill this growing demand, as such,
more computer science graduates are needed (Baser, 2013;
Bureau of Labor Statistics, 2018). One reason students may
not select a computer science-related major could be the
perception of computer science as difficult, boring, and
unsocial (Baser, 2013). Fortunately, past research has shown
that these negative perceptions can be combatted through early
exposure to computer science concepts in K-12 education
(Ashcraft, 2012; Google Inc. & Gallup Inc., 2015).

However, there is a lack of formal computer science
educational opportunities in U.S. schools (Ashcraft, 2012). For
instance, only 52% percent of 7th to 12th grade students
reported computer science classes at their school (Google Inc.
& Gallup Inc., 2015). The lack of early exposure to computer
science is likely causing many prospective computer scientists
to never fully consider the profession, thereby limiting the
additions of skilled computer science professionals. Past
research with upper elementary school students has
demonstrated that this age group is capable of both learning
and applying computer science concepts (Grover & Pea,
2013). For instance, Wilson and colleagues (2012) found that
students were able to learn computer science concepts such as
loops, conditionals, and user interaction, from creating a game
in the visual block-based programming environment Scratch.
Visual block-based programming allows students to learn
complex computer science concepts without having to also
learn a complex written programming language whose syntax
(spelling, comma placement, indentations, spaces, etc.) is
crucial for the program to function correctly (Hill et al., 2015).
Although there is clear evidence regarding young students’
ability to learn and conceptualize computer science, there is
substantially less research exploring elementary aged students’
ability to effectively collaborate during programming
activities (K-12 CS Framework, 2016).

Modern computer science is a collaborative discipline,
with programmers periodically working on the same code

simultaneously; therefore, the need for computer scientists to
possess collaboration skills in addition to programming skills
is critical and increasingly emphasized in the computer
science industry (Dingsøyr & Dybå, 2012). Thus, the
importance of collaboration is highlighted in the current K-12
Computer Science Framework (2016). For instance, past
studies have shown that when students engage in collaborative
programming activities, they complete assignments faster,
report less effort in completing those assignments (Nawrocki
et al., 2005), describe an overall better learning experience
(Williams et al., 2002), and demonstrate increased retention of
the material (McDowell et al., 2006).

Past Research

Collaborative programming can take the form of many
paradigms; two types are pair programming and side-by-side
programming. Pair programming is defined as two students
working on a program from one computer with one student
acting as the driver and the other acting as the navigator
(Williams et al., 2002.) The driver has control of the mouse
and keyboard and actively constructs and changes the code
while the navigator observes the driver and actively seeks to
identify errors, plans ahead, and offers suggestions. The driver
and navigator should talk through each problem the entire
time. Side-by-side programming offers an alternative
collaborative configuration. It is defined as two students
sitting next to each other, each with their own computer,
working on the same program simultaneously (Nawrocki et
al., 2005). There is currently very little research looking at
collaborative programming as a teaching paradigm for
elementary aged students.

Most collaborative programming studies have taken
place in either industry or university settings, very rarely
including elementary aged learners (Salleh et al., 2011).
Research with university students indicated that pair
programming led to increased course completion, pass rates,
persistence, confidence, and enjoyment of programming
(McDowell et al., 2006). Among high school students, pair
programming led to increased understanding of computer
science concepts and improved students’ attitudes towards

Proceedings of the Human Factors and Ergonomics Society 2019 Annual Meeting

C
op

yr
ig

ht
 2

01
9

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s

So
ci

et
y.

 D
O

I 1
0.

11
77

/1
07

11
81

31
96

31
15

5

493

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1071181319631155&domain=pdf&date_stamp=2019-11-20

programming compared to solo programming (Papadakis,
2018). Research with middle school students found that pair
programming significantly increased computational thinking
skills and programming knowledge; this effect was especially
true for less experienced students (Denner et al., 2014).
Lastly, research with elementary aged students found that this
age group had difficulty collaborating effectively while pair
programming (Tsan et al., 2018). For instance, they often
failed to transition effectively between the driver and
navigator roles, take or relinquish control at appropriate times,
and often did not ask relevant questions (Tsan et al., 2018).
Pair programming appears to be an effective teaching
paradigm for middle school and beyond; however, similar
findings are not present for elementary aged students, possibly
due to the shortage of research within this age group.
However, it is also possible that pair programming is not
effective for elementary aged students because they are not as
developmentally advanced as older children and adults; and
therefore, do not yet possess the skill necessary for effective
collaboration.

Side-by-side programming has been studied significantly
less than pair programming, and the research that has been
completed mostly involved university students or
programmers already in industry. For instance, a study of
senior undergraduate computer science students found that
they were able to complete assignments faster and reported
less effort with side-by-side programming compared to pair
and solo programming (Nawrocki et al., 2005). To our
knowledge no studies have examined side-by-side
programming with elementary aged students, an age group
which is already vastly underrepresented in the collaborative
programming literature (Tsan et al., 2018). This is a large gap
in the literature because results for adults are not very
generalizable to children who’s cognitive, learning, and
communication capabilities are vastly different. Further,
because there is little research on the use of collaborative
programming environments as an educational paradigm for
elementary aged students, very little is understood regarding
best practices for designing an educational collaborative
programming environment for this age group. For instance,
which would be more effective for elementary aged students:
pair programming or side-by-side programming?

Theoretical Framework

Ryan and Deci’s (1985) self-determination theory states
that behavior is motivated by three psychological needs:
“autonomy (the urge to control one’s own life), competence
(the urge to experience mastery), and psychological
relatedness (the urge to interact with, be connected to, and
care for others)” (National Academies of Sciences, 2018, p.
115). Using this theory, we theorize that students will be more
likely to learn programming skills in environments where they
perceive the greatest autonomy. This autonomy will then lead
to greater intrinsic motivation to reach competence. Further,
competence is more likely to occur when supported by a
partner who can collaborate effectively.

Current Study

 The current study examined the interface design of a
collaborative computer science learning environment for
elementary aged students. Our study consisted of three main
objectives: 1) to see what collaborative programming
paradigm elementary aged students preferred, side-by-side or
pair programming; 2) to understand why students preferred
one method over the other and what elements of each they
liked and disliked; and 3) to explore ideas for how to
effectively design a collaborative programming environment
for elementary aged students. The current study’s research
questions reflect these objectives:
• RQ1: Which programming environment did students

prefer: side-by-side or pair programming?
• RQ2: What challenges did students experience with pair

and side-by-side programming?
• RQ3: What aspects of pair and side-by-side programming

did the students like?
• RQ4: What are the students’ suggested features for

improving collaboration?

METHOD
Participants

15 students (33.33% female; 73.33% white) from two
fifth-grade gifted classrooms participated in the study. One
was a math class and one was an English language arts (ELA)
class. These students participated in five computer science
instructional days each spaced a week apart, for a total of five
weeks.

Materials

Seven focus group questions (Table 1) directly aligned
with our research questions were presented to students after
five computer science instructional days. Students used
NetsBlox (Figure 1), a block-based educational programming
environment based on the visual programming language
Snap!. Programming environments such as NetsBlox are
commonly used in K-12 classrooms and have been shown to
be an effective method to introduce coding concepts to
elementary aged students (Broll, 2018). Additionally,
NetsBlox enables side-by-side programming by having
students login to the same virtual programming space from
two separate computers. NetsBlox’s side-by-side
programming environment is synchronized, meaning partners
can see each other’s work in real-time.

Figure 1: Screenshot of NetsBlox

Proceedings of the Human Factors and Ergonomics Society 2019 Annual Meeting 494

Table 1: Focus Group Questions

Focus Group Question
Research
Question
Alignment

1) Which way did you prefer? When you pair
programmed or when you worked side-by-side on
two separate computers?

RQ1

2) What were some things that did not go well while
you were pair programming?

RQ2

3) What were some things that did not go well while
you were collaborating with your partner and
programming on separate computers?

RQ2

4) What did you like about pair programming? Do
you have any specific examples?

RQ3

5) What did you like about collaborating with your
partner while programming on separate
computers? Do you have any specific examples?

RQ3

6) Imagine you are designing a new version of
NetsBlox with the goal of improving
collaboration between two programmers. What
would you change about NetsBlox to improve
collaboration?

RQ4

7) Is there anything else that you would like to talk
about or give feedback on?

Procedure

Students first participated in five total instructional days
each spaced a week apart. The classroom teacher was present
each day and paired the students; the students were often
paired in new ways each week. One of the researchers taught
the computer science concepts each class. Additionally, the
differences between side-by-side and pair programming were
re-explained each class and during pair programming, students
were told when to switch roles. Each class lasted 60 minutes
and students alternated between side-by-side programming
(Figure 2a) and pair programming (Figure 2b) each week.
As we did not have access to additional instructional days,
students were exposed to side-by-side programming one day
more than pair programming. Also, the majority of the
students were in both classes as they received gifted services
for both math and ELA. Computer science topics covered in
the curriculum included conditionals, conditional debugging,
variables, loops, and pattern recognition. On the sixth week,
students participated in focus groups. Focus groups were
recorded and transcribed by the researcher. There were a total
of four focus groups (see Table 2 for a breakdown of each
group).

Analyses
 Focus groups were transcribed using a combination of
typing and the Google Docs voice typing tool. For research
question one: Which programming environment did students
prefer: side-by-side or pair programming? We took a general
count of each student’s answer to focus group question one.
Research questions two, three, and four were analyzed using
thematic analysis by one of the researchers. Thematic analysis
is a qualitative method, selected for its flexibility and used to
organize and describe a data set (Braun & Clark, 2006). These
categories were checked for internal coherence, consistency,
and distinction and then labeled based on overall themes.
Thematic analyses were completed using the qualitative data
coding software ATLAS.ti (ATLAS.ti, 2018).

Table 2: Focus Group Breakdown
Focus Group Time Gender Breakdown

1 26 Minutes 3 males, 1 female
2 28 Minutes 2 males, 2 females
3 24 Minutes 3 males, 1 female

4* 37 minutes 2 males, 1 female

*Focus group four was held a week later than the other groups as
those students were absent from class the previous week.

Figure 2: A) Side-by-side programming setup. B) Pair
programming setup.

RESULTS
Research Question One: Which programming
environment did students prefer: side-by-side or pair
programming?

Twelve out of fifteen students stated they preferred side-
by-side programming when asked the first focus group
question, “Which way did you prefer?...”

Research Question Two: What challenges did students
experience with pair and side-by-side programming?
 From the thematic analyses, six challenges with pair
programming and three challenges with side-by-side
programming arose (Table 3). Specifically, for pair
programming, it was difficult for some pairs to negotiate fair
turn taking. For instance, students should have been the driver
50% of the time and the navigator 50% of the time; however,
in some cases, a partner might monopolize the driver role
making the split closer to 80% (driver)/ 20% (navigator), and
vice versa (e.g., “maybe sometimes you would have a partner
that would maybe just take over and do it all and then you’re
like, ‘Hey can I have a turn.’ ‘No you already did it.’”).
Contributing to unfair turn taking, students found it
challenging to wait for their turn to be the driver as “it was
hard to be patient,” and both students “wanted to control it
but… it can only be one at one time.” Additionally, some
partners had trouble communicating effectively. For instance,
pairs would get into arguments over what they should do, or
the navigator would warn the driver that, “…something is
going to happen…,” but their partner often did not, “…listen
and they were the ones that are on the computer.” Further,
many students found the setup of pair programming to be
“kind of cramped,” and felt that pair programming offered
significantly less hands-on experience as “…the navigator,
they don't really get the hands-on experience.” Lastly, students
stated that the navigator was often not paying attention to what
the driver was doing. For example, “sometimes when I would
be the driver, my navigator wouldn’t really listen, just dozing
off … staring off into space and wasn't really paying

Proceedings of the Human Factors and Ergonomics Society 2019 Annual Meeting 495

attention.” Many students appeared to treat the navigator role
as a break until it was their turn to be the driver again.
 For side-by-side programming, students brought up
technical issues such as “the lag makes it slow…,” or
“sometimes when I would edit something, it wouldn't show up
on their screen.” The students also stated that they often
worked a little too independently which led to poor
coordination of work. For example, “… if you were working
on the same area of code, it would be kind of hard because
you're both kind of doing your own thing, so it just kind of
jumbles up.” Lastly, it was problematic when students worked
on different components of the code because “you can't really
see what the other person is doing…”

Table 3: Research Question Two Results: Challenges with
Pair and Side-by-Side Programming

Theme (# Comments)

Number of
Comments

Pair

Problems with Turn Taking 6
Challenging to Wait for Turn to Be the Driver 5
Poor Communication: Arguing and Not Listening
to Partner

5

Physical Setup Was Too Cramped 4
Lack of Hands-on Experience 3
Navigator Not Paying Attention 3

Side-
By-
Side

Technical Issues 8
Working Independently: Poor Coordination
between Partners

5

Can’t See What Partner is Doing 8

Research Question Three: What aspects of pair and side-
by-side programming did the students like?

From the thematic analyses, three positives with pair
programming and five positives with side-by-side
programming arose (see Table 4). For pair programming,
some students felt they were able to learn more during pair
programming as “you can learn from what your partner is
doing” and your partner can help correct any mistakes you
make. Additionally, many students stated that, “it's easier to
see what the other person is doing” compared to side-by-side
programming. And lastly, it was much easier to “catch
someone's mistake” while pair programming compared to
side-by-side programming.

Table 4: Research Question Three Results: Positives of
Pair and Side-by-Side Programming

 Theme (# Comments) Number of
Comments

Pair
Learn from More from Watching Partner 7
Easier to See What Partner is Doing 6
Easier to Find Mistakes 6

Side-
by-
Side

Efficiency 8
More Independence and Control 8
Learned More 4
Less Cramped 3
More Hands-on Experience 3

For side-by-side programming, students felt they were

able to get work done more efficiently “because one person
can work on one thing and another could work on the other.”
Students also liked that side-by-side programming offered
more independence and control as students did not have to
wait their turn to enact their ideas (e.g., “…felt like when I had

the side-by-side I could always, like if I had an idea, I could
do it then”). While some students felt they learned more from
pair programming, others felt side-by-side enabled them to
“learn more because you had more of a chance to experiment
and learn more about what each thing did.” Students also
stated that side-by-side programming’s setup was much less
cramped and that they got significantly more hands-on
experience when side-by-side programming.

Research Question Four: What are the students’ suggested
features for improving collaboration?
 Students gave several suggestions for improving
software interfaces that would support side-by-side and pair
programming. Students’ top suggestions for side-by side
programming were as follows. Add an instant messaging
function (6 comments) to communicate with a partner (e.g.,
“you could have like a message box or something on the
side…”). Students also offered design ideas that looked a lot
like Google Docs features which the students use regularly at
school (3 comments). These features included having an
indicator to show exactly where a partner is working in the
code (e.g., “maybe like on Google Docs like if you’re on part
of like the document, it shows like a little color to [inaudible]
that you’re there”); have an option to make suggestions rather
than directly edit the code, and be able to send partner sections
of code and have them fix it and then send it back (e.g., “if
there were suggestions that [inaudible] then you can send it to
them like Google Docs. It would say that like they made a
suggestion you could either undo it or leave it”).
 For pair programming, students’ suggestions were as
follows. First, some students suggested a timer to indicate
when it is time to switch. However, not all students liked the
idea of a timer, “like if it showed the timer the whole time I
would be rushed to get done work I wanted to get done before
I had to switch back.” Students also suggested changing the
physical setup so it would be less cramped (3 comments).
Some mechanisms for this change included having a bigger
screen, having two mice and keyboards and have the navigator
not look directly over the driver’s shoulder (e.g., “like make
the driver better by putting in the navigator...not like right
behind their shoulder because it like puts pressure on you”).

DISCUSSION

 Participants overwhelmingly preferred side-by-side
programming due to feeling they had more autonomy, were
able to get work done more efficiently, learned more, and got
more hands-on experience compared to pair programming.
Additionally, side-by-side programming still enabled students
to collaborate by having them simultaneously work on the
same program from two workstations. The benefits of side-by-
side programming align with self-determination theory which
states that behavior is motivated by autonomy, competence,
and psychological relatedness (Deci & Ryan, 1985).
Specifically, the benefits of side-by-side programming
themes—more independence and control, efficiency, learning
more, and more hands-on experience—directly map onto two
of the three factors necessary for self-determination: autonomy
and competence. However, even though side-by-side
programming enhanced autonomy, there may be other

Proceedings of the Human Factors and Ergonomics Society 2019 Annual Meeting 496

downsides, as demonstrated by student comments (e.g., lag,
poor coordination). Additionally, in terms of competence, the
theme of ‘learned more’ arose for both pair and side-by-side
programming; however, the reasoning for why they learned
more differed between the two.
 Students suggested pair programming enabled greater
communication between partners allowing for more partner-
to-partner learning while side-by-side enabled learning via
hands-on experience. Hands-on experience even became an
additional theme for the benefits of side-by-side programming
while the lack of hands-on experience was one of the issue
themes for pair programming. Additionally, the independence
gained in side-by-side programming seemed to mitigate some
of the issues found in pair programming. For instance, during
pair programming, students found it hard to wait for their turn,
leading to problems with fair turn-taking as most students
wanted to be the driver. High tensions over who controlled the
code led to poor communication methods such as arguing or
the driver ignoring navigator suggestions. Many navigators
chose to not pay attention at all because they did not think
their role was important, and when they offered suggestions,
the driver often did not act on these suggestions. The
complaints for pair programming align with self-determination
theory as students reported less autonomy, hands-on
experience (competence), and often did not experience good
cohesion with their partner (psychological relatedness). Past
research with self-determination theory suggests that when
students do not meet these three psychological needs, they are
more likely to experience decreased intrinsic motivation and
disengagement (Deci and Ryan, 1985).

Design Recommendations
 These findings indicate that side-by-side programming
may be the best paradigm to teach elementary aged students
programming skills; however, more research is necessary to
see if these findings are replicable, especially since this study
had a small sample size and used a less representative sample:
students from a gifted classroom. Additionally, future side-by-
side programming environments should consider some of the
design recommendations students suggested. First, technical
issues such as lag should be prevented. However, there may be
cases where uncontrollable factors, such as a slow internet
connection, cannot be prevented, meaning side-by-side
programming environments should also be designed with
these limitations in mind. Additionally, we believe features
such as text or video-based messaging for remote use, an
indicator to show where a partner is in the code, and the ability
to make suggestions would be beneficial additions to a side-
by-side programming environment. Future research should
empirically test the utility of each design feature on their
ability to improve both learning and collaboration.

Conclusions

Although past research shows pair programming as
beneficial to learning, these finding are likely not
generalizable to elementary aged students because much of the
research was done with older students, and elementary aged
students have very different cognitive capacities. Our findings
help bridge several gaps in the collaborative programming

literature by examining collaborative programming with
elementary aged students and comparing pair versus side-by-
side programming. Additionally, we provided data to inform
the design of new collaborative programming environments
for elementary aged students.

ACKNOWLEDGEMENTS
We would like to thank our cooperating teachers and members
of the STEM Cyberlearning Lab at the Friday Institute. This
material is based upon work supported by the National
Science Foundation under Grant No. DRL-1721000.

Reference
Ashcraft, C., Eger, E., & Friend, M. (2012). Girls in IT: The facts. National

Center for Women & IT. Boulder, CO.
ATLAS.ti (Version 8) [Computer software]. (2018).
Baser, M. (2013). Attitude, gender and achievement in computer

programming. Online Submission, 14, 248-255.
Broll, B. (2018). Collaborative educational environment design for accessible

distributed computing (Doctoral dissertation). Retrieved from
Vanderbilt Library.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology.
Qualitative Research in Psychology, 3, 77-101.

Bureau of Labor Statistics (2018). Computer and information technology
occupations. Retrieved from https://www.bls.gov/ooh/computer-and-
information-technology/home.htm

Deci, E., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in
human behavior. Springer Science & Business Media.

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming:
Under what conditions is it advantageous for middle school students?.
Journal of Research on Technology in Education, 46, 277-296.

Dingsøyr, T., & Dybå, T. (2012). Team effectiveness in software
development: Human and cooperative aspects in team effectiveness
models and priorities for future studies. In International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE)
(pp. 27–29).

Google, & Gallup. (2015). Searching for computer science: Access and
barriers in U.S. K-12 education: Google for Education.

Hill, C., Dwyer, H. A., Martinez, T., Harlow, D., & Franklin, D. (2015,
February). Floors and Flexibility: Designing a programming
environment for 4th-6th grade classrooms. In Proceedings of the 46th
ACM Technical Symposium on Computer Science Education (pp. 546-
551). ACM.

K-12 Computer Science Framework Steering Committee. (2016). K-12
computer science framework. Retrieved from https://k12cs.org

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair
programming improves student retention, confidence, and program
quality. Communications of the ACM, 49(8), 90-95.

Nawrocki, J. R., Jasiński, M., Olek, Ł., & Lange, B. (2005, November). Pair
programming vs. side-by-side programming. In European Conference
on Software Process Improvement (pp. 28-38). Springer, Berlin,
Heidelberg.

Papadakis, S. (2018). Is pair programming more effective than solo
programming for secondary education novice programmers?: A case
study. International Journal of Web-Based Learning and Teaching
Technologies, 13, 1-16.

Salleh, N., Mendes, E., & Grundy, J. (2011). Empirical studies of pair
programming for CS/SE teaching in higher education: A systematic
literature review. Transactions on Software Engineering, 37, 509–525

Tsan, J., Rodríguez, F. J., Boyer, K. E., & Lynch, C. (2018, February). I think
we should...: Analyzing elementary students' collaborative processes
for giving and taking suggestions. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education (pp. 622-627).
ACM.

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In support
of pair programming in the introductory computer science course.
Computer Science Education, 12, 197-212.

Wilson, A., Hainey, T., & Connolly, T. (2012, October). Evaluation of
computer games developed by primary school children to gauge
understanding of programming concepts. In 6th European conference
on games-based learning (ECGBL) (pp. 4-5).

Proceedings of the Human Factors and Ergonomics Society 2019 Annual Meeting 497

