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ABSTRACT

Collaborative problem solving has numerous benefits for learners,
such as improving higher-level reasoning and developing critical
thinking. While learners engage in collaborative activities, they
often experience impasse, a potentially brief encounter with dif-
fering opinions or insufficient ideas to progress. Impasses provide
valuable opportunities for learners to critically discuss the prob-
lem and re-evaluate their existing knowledge. Yet, despite the in-
creasing research efforts on developing multimodal modeling tech-
niques to analyze collaborative problem solving, there is limited
research on detecting impasse in collaboration. This paper inves-
tigates multimodal detection of impasse by analyzing 46 middle
school learners’ collaborative dialogue—including speech and facial
behaviors—during a coding task. We found that the semantics and
speaker information in the linguistic modality, the pitch variation
in the audio modality, and the facial muscle movements in the video
modality are the most significant unimodal indicators of impasse.
We also trained several multimodal models and found that com-
bining indicators from these three modalities provided the best
impasse detection performance. To the best of our knowledge, this
work is the first to explore multimodal modeling of impasse during
the collaborative problem solving process. This line of research
contributes to the development of real-time adaptive support for
collaboration.
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1 INTRODUCTION

Collaborative problem solving refers to the coordinated attempt
between two or more people to construct and maintain a shared
solution to a problem [35]. A substantial body of research reports
numerous benefits of collaborative problem solving such as improv-
ing critical thinking [20], developing social skills [37] and learning
from diverse viewpoints through constructive argumentation [23].
During the collaborative problem solving process, learners often
encounter impasses as part of the natural flow of collaborative
interactions. Roschelle et al. [30] referred to an impasse during
collaborative problem solving as when team members had either
differing opinions regarding the task or insufficient ideas to make
progress on the task.

Impasse can be beneficial for learning. VanLehn [38], discussing
impasse in the context of individual learning, stated that “Learning
occurs only when an impasse occurs. If there is no impasse, there
is no learning" D’Mello et al. [9] characterized individual impasse
as the learner lacking the knowledge to solve a given task, and sug-
gested that when learners reach an impasse, they need to engage
in effortful cognitive activities which can lead to either improved
understanding and higher learning gains if the impasse is resolved,
or frustration and boredom if the impasse persists. Because working
through impasse is important for learning, automatically detecting
the moment when learners reach an impasse is a crucial step to-
ward modeling the collaborative problem solving process, as well
as informing the development of adaptive learning support for
collaboration.

However, there is limited research on impasse in the context
of collaborative problem solving, and we have not yet seen tech-
niques for automatically detecting impasse during collaboration.
Prior work focused on analyzing individual learners’ cognitive and
affective transitions when reaching an impasse [9, 26]; however,
analyzing individual impasses is insufficient for detecting impasses
when learners collaborate in groups. Within collaboration, individ-
ual impasse could be resolved when the partner who did not reach
the same impasse assists in resolving it [17], but a group impasse in-
dicates that the team as a unit could not move forward because they
hold differing opinions or they all individually reached impasse
and cannot resolve it without extra help [30]. In this paper, we aim
to fill the gap and automate the detection of group impasse during
collaborative problem solving, which holds the potential to improve
the learning experience by supporting timely interventions when
impasse persists.

Our paper explores how multimodal learning analytics can be
used to detect impasse during dyadic collaborative problem solving.
We collected audio and video data from 46 middle school learners
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(23 pairs), who worked on a series of collaborative coding activities.
We address the following research questions (RQs):

e RQ1: What are the most predictive unimodal features to
detect impasse during dyads’ collaborative interactions?

e RQ2: Does multimodal feature fusion help improve impasse
detection performance? If so, what are the best multimodal
feature combinations from among those we considered?

To answer RQ1, we extracted and examined the performance of
a variety of features in linguistic, audio, and video modalities. In the
linguistic modality, we evaluated the following: (1) term frequency-
inverse document frequency (TF-IDF) [29] features; (2) semantic
features generated from Word2Vec [24] and Bidirectional Encoder
Representations from Transformers (BERT) [7]; and (3) speaker
changes [15]. In the audio modality, we evaluated: (1) acoustic-
prosodic features (e.g., loudness, pitch, spectral flux) [25]; and (2) a
spectrogram-based feature embedding method generated from VG-
Gish [16]. In the video modality, we evaluated: (1) eye gaze; (2) head
movements; and (3) facial Action Units (AUs). The results revealed
a series of indicators (e.g., semantics, speaker-changes, pitch varia-
tions, and the mutual presence of facial AU23 and AU4) for impasse
detection. To answer RQ2, we evaluated different combinations of
predictive unimodal features. The results suggest that linguistic +
audio + video with early fusion was the best-performing feature
combination. This study contributes to the ongoing efforts to use
multimodal learning analytics to support collaborative problem
solving.

2 RELATED WORK

2.1 Multimodal Learning Analytics in

Collaborative Problem Solving

Multimodal learning analytics (MMLA) provides new insights into
students’ learning through analyzing various streams of data (e.g.,
speech, faces, gestures) during a learning activity [6]. Previous
MMLA research explored data-driven approaches and multimodal
modeling in attempts to understand students’ learning [2, 22], pre-
dict learning performance[8, 31], and construct models of students’
interactions [1, 12].

In recent years, there have been increased research efforts to-
ward using MMLA to investigate collaborative problem solving
[39]. Grover et al. [14] proposed a framework to capture multi-
modal data (video, audio, clickstream, and screen capture) from
pairs of children as they work together on a pair-programming
task, and trained a supervised machine learning model to predict
the level of collaboration. Worsley [40] collected gesture, speech,
and video data as college students collaborated in pairs to complete
engineering design tasks, and utilized MMLA to analyze how these
multimodal data relate to students’ learning gains. Vrzakova et al.
[39] analyzed multimodal data including screen capture, speech,
and body movements as triads engaged in a collaborative program-
ming task. Stewart et al. [33] utilized MMLA with dialogues, task
contexts, facial expressions, and acoustic-prosodic features gener-
ated by triads collaborating to solve a programming task.

Our study differs from these studies in two ways: First, while
most aforementioned studies focused on acoustic and visual indi-
cators (e.g., spectral features of audio, body movements) to model
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learners’ interactions, our study also examines linguistic indica-
tors for the task of detecting impasse during collaborative problem
solving. Second, we analyze collaborative problem solving using
a novel approach that automatically detects moments of impasse
through state-of-the-art feature representations generated from
pre-trained models.

2.2 Impasse and Learning

Prior research has mostly focused on discussing impasse in the
context of individual learning. VanLehn [38] proposed the impasse-
driven learning theory, in which learning is facilitated through
the resolution of impasses encountered during problem solving.
D’Mello et al. [10] suggested that successfully resolving impasse is
positively related to learning gains. In another study, D’Mello et al.
[9] also proposed a model of affective dynamics in which impasse
triggers cognitive disequilibrium (a state of uncertainty), requiring
learners to regulate their uncertainty through effortful problem
solving in order to restore equilibrium. However, failing to resolve
the impasse would lead to frustration and eventually boredom if
the impasse persists.

There is limited research on impasse in the context of collabo-
rative learning. Roschelle et al. [30] were among the first to study
impasse during collaborative problem solving by analyzing dyads’
dialogues. Similarly, Lam [18] analyzed dyads’ dialogues when they
encountered impasse during collaborative tasks, and found a series
of dialogic moves that could be used to identify impasses. There
is not yet a technique for automatically detecting impasse during
collaboration, and our study aims to fill this gap.

3 DATASET
3.1 Participants and Collaborative Problem
Solving Tasks

Our dataset consists of audio/video data from 46 learners (23 pairs)
in 7th grade classrooms in a middle (lower secondary) school in
the United States [3]. The dataset was collected in 2019 before the
COVID-19 pandemic. The learners, 30 girls and 16 boys, collabo-
rated on a series of coding activities, in which they learned funda-
mental CS concepts such as variables, conditionals, and loops using
the Snap! block-based learning environment!. The learners fol-
lowed the pair programming paradigm, in which each dyad shared
one computer and switched roles between “driver" and “navigator”
during the science-simulation coding activity [4](See Fig. 1).

3.2 Data Collection and Text Transcription

Each collaborative coding activity took around 30 minutes. Dyads
were video recorded at 30 fps in 1080p through a front-facing de-
tached camera, and each child wore a lavalier microphone without
active noise cancelling capabilities. The audio was recorded by
digital sound recorders with a sample rate of 48KHz. After the au-
dio/video data collection process was finished, we used an online
transcription service? to generate the textual transcript for each
dyad. The transcripts included three pieces of information for each
spoken utterance: (1) Starting Time, in the form of hour:min:sec; (2)

!https://snap.berkeley.edu
Zhttps://www.rev.com
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Figure 1: Left: A sample script created with Snap!. Right: Two middle school learners collaborating on a pair programming
task. In the moment, the left learner is the "driver" and the right learner is the "navigator"; their collaborative interaction is
video-recorded with a front-facing camera, and audio-recorded with each learner wearing a lavalier microphone.

Speaker, in the form of S1 or S2; and (3) Transcribed Text. In total, and audio segments based on the utterance start time. Since we
the corpus included 12 hours and 18 minutes of audio and video only obtained the starting time (not end time) of each utterance
recordings, with 10,265 transcribed utterances. from the transcription, the video and audio segments included the
speech of that turn along with any silence that elapsed before the
3.3 Impasse Annotation next turn exchange began. The next step was to extract unimodal
In line with prior work on manually analyzing impasse during features from turn exchange, audio and video segments, and then to
dyadic collaboration [18, 30], our process for annotating impasse train supervised classifiers to identify the most predictive unimodal
was based on the textual transcripts. The tagging protocol followed features for differentiating Impasse and Non-Impasse samples.

the idea suggested in prior work [30] that the learners “had differing

opinions", or “had insufficient ideas to progress". We annotated 4 FEATURES

impasse at the granularity of one turn exchange, e.g., one back-and- 4.1 Linguistic Features
forth conversation of two learners. We referred to these adjacent
pairs of turns as "turn exchanges". There were several reasons for
this choice of granularity. We opted to annotate turn exchanges
from both learners instead of single turns from individuals because
the criterion “students had insufficient ideas to progress" requires

Learners often express their disagreements or confusion verbally
through dialogue. To extract linguistic features, we represented
each turn exchange with two main methods: a statistical method
and a semantics-based method.

an indication that both members of the dyad were stuck. At the 4.1.1  Statistical Method: Since signal words or phrases (e.g., “wait”,
same time, we did not annotate a longer series of turns because the “do not”, “not know”) appear frequently when learners reach an im-
literature suggests that a next-turn level analysis is a significant passe, we experimented with a simple statistical method by generat-
indicator within collaborative learning [30], and the sliding window ing term frequency-inverse document frequency (TF-IDF)* ranking
of two turns has substantial computational advantages for reliable of the unigrams and bigrams (consecutive two-word phrases).

detection compared to a longer-size sliding window or a non-fixed-
size window.

To prepare for the annotation, two annotators first devised and
iteratively refined the annotation protocol on a training set. Then
both annotators independently tagged each turn exchange as Im-
passe or Non-Impasse in four learning sessions (different than the
ones used for training) based on our tagging protocol. The Co-
hen’s Kappa score was 0.70, indicating substantial inter-annotator
agreement. Then the first author continued tagging the remaining
sessions. Table 1 shows example excerpts and descriptions for both
Impasse and Non-Impasse classes. Among a total of 5,080 turn ex-
changes, 888 (17.5%) were labeled as Impasse and 4,192 (82.5%) were
labeled as Non-Impasse.

For all turn exchanges, we used FFmpeg?, an open-source video

4.1.2  Semantics-Based Method: Semantics refers to meaning in
language. We utilized three different semantic language models to
extract linguistic features: (1) Word2Vec [24], (2) Fine-tuned BERT
[7], and (3) Speaker-aware Fine-tuned BERT [15].

(1) Word2Vec: The Word2Vec method learns word associations
from the text, and groups similar words together in a vector space
based on their semantics. Our Word2Vec model was trained with
gensim, an open-source natural language processing library®. The
vector size parameter for each word embedding was set to 300, with
a default sliding window size of 5.

(2) Fine-tuned BERT: Similar to Word2Vec, BERT represents
semantics of words in a vector space. A pre-trained BERT is a lan-
guage model that was trained on a large amount of data (e.g., texts

and audio processing library, to extract the corresponding video *https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.
Tfidf Vectorizerhtml
Shttps://www.fimpeg.org Shttps://radimrehurek.com/gensim
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Table 1: Annotation examples of Impasse and Non-Impasse during dyads’ collaborative dialogues.

Annotation Turn Exchange Transcripts Description
Categories
A: This bottom one? That’s right here. Learner A is answering/explaining
B: No, it’s not. and learner B disagrees.
Impasse A: Let me see. That s’tafted a clone. Learner A i§ elaborating and
. B: I don’t think that’s right. learner B disagrees.
Disagr t
A: No, when the flag is clicked. Learner A and learner B are arguing
B: No, it says when this costume is clicked. and no consensus is reached.
A: Now we are stuck. Learner A and learner B both feel stuck.
B: Me too. It’s supposed to go in here.
Impasse A: Wait. Do you wanna... Can we do that? Learner A is asking a questionAand
. B: No, yeah, well, I mean, maybe. learner B does not give a certain answer.
Insufficient Ideas

A: Okay. I don’t know what to do.

B: I said I don’t understand first.

Learner A and learner B both feel stuck.

A: That’s cool.
B: I'm glad it’s moving.

Learner A and learner B are moving along
smoothly with the coding task.

A: Wait, if the amplitude is...

Non-Impasse B: Greater than, yeah, 80.

Learner A is thinking and
learner B gives a certain answer.

A: Did I create amplitude? No, I didn’t.

B: No, you didn’t. Not yet.

Learner A is self-answering and
learner B agrees.

from Wikipedia and books) in a self-supervised way. Fine-tuning
helps pre-trained BERT models adapt to the specific context of the
downstream learning task (in our case, classification of impasse)
and achieve better task performance. We fine-tuned the BERT-base-
uncased model, which is a publicly available BERT model trained
only on English texts®. With this model, we transformed each spo-
ken word into a 768-dimensional word embedding vector. The
fine-tuning process involves the weights of the hidden layers in the
BERT model updated along with the objective of minimizing the
loss for the subsequent classification of impasse.

(3) Speaker-aware Fine-tuned BERT: We experimented with
a version of fine-tuned BERT that used an additional embedding for
speaker information. Speaker information is influential in whether
a collaborative dialogue excerpt represents an impasse, as indicated
by this concatenated sequence from one turn exchange: Is this right?
I don’t know how to get them. Wait, go on this. Without speaker
information, this sequence could have come from different cases of
turn exchange:

Case 1:

o Speaker A: Is this right?
o Speaker B: I don’t know how to get them. Wait, go on this.

Case 2:

o Speaker A: Is this right? I don’t know how to get them.
e Speaker B: Wait, go on this.

In the first case, the dyad members experienced a brief period of
impasse because learner A was asking a question, but learner B
did not give a certain answer. This example belongs to the Impasse-
Insufficient Ideas category. However, the second case belongs to the
Non-Impasse category because learner A was asking a question, but
received a definite answer from learner B. To differentiate between
these two cases, our impasse detection model should be aware of
which turn was spoken by which speaker. Following prior work

Shttps://github.com/google-research/bert
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that introduced speaker embeddings into BERT models [15, 36], we
first added an end of turn segmentation token, [EOT], at the posi-
tion of the speaker transition in each concatenated sequence, then
applied an additional speaker embedding for each word token in
the sequence. Following the general pipeline to generate sequence
embeddings from BERT [7], the input token representation was
the sum of token embeddings, position embeddings, and speaker
embeddings. The speaker embeddings were randomly initialized
and learned during model training (Fig. 2).

4.2 Acoustic Features

Simple audio indicators (e.g., speaking time, synchrony in the rise
and fall of the pitch) derived from audio have been widely used to
analyze and assess the quality of collaboration and recognize dyadic
affective states [5, 28]. In addition, spectrogram (an image represen-
tation that describes an audio’s time-frequency distribution) has
proven effective in measuring speakers’ emotions (e.g., positive,
neutral, negative) [27]. Because impasse triggers different affective
states in learners[9], we investigated acoustic features for detecting
impasse. We used openSMILE, an open-source automatic acoustic
feature extraction toolkit [11], for extracting acoustic-prosodic indi-
cators. For each turn exchange’s corresponding audio segment, we
used openSMILE to extract acoustic-prosodic feature sets (See Ta-
ble 2) within a 20ms frame and a window shift of 10ms. Apart from
acoustic-prosodic features, we also used VGGish” for extracting
audio embeddings from spectrograms. VGGish is a neural network
pre-trained on over 2 million Youtube soundtracks® with more than
1,000 human-labeled audio event classes. For each turn exchange’s
corresponding audio segment, VGGish generated a 128-dimensional
vector for every one-second audio frame after dimensionality re-
duction with Principal Component Analysis.

7https://github.com/tensorflow/models/tree/master/research/audioset/vggish
8https://research.google.com/youtube8m
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Figure 2: BERT with speaker embedding for Case 1. The input embeddings are the sum of token, position, and speaker embed-
dings. Sp and S; represent the first and the second speaker of the current turn exchange. [CLS] is the start token aggregating
the hidden representation of the whole sequence, and will be used for the later impasse moment classification task; [EOT] is
the turn segmentation token indicating the position of speaker switch; [SEP] is the end token of the sequence.

Table 2: Description of the acoustic-prosodic features [25] extracted by openSMILE.

Acoustic-Prosodic Feature

Description

Loudness
Pitch
Jitter

Shimmer

Spectral Flux
MFCCs

A measurement of amplitudes of the signal
A measurement of frequencies of the signal
How quickly the pitch of the signal is changing
How quickly the loudness of the signal is changing
How quickly the power spectrum of the signal is changing
A description of the shape of the signal’s short-term spectrum

4.3 Visual Features

A variety of features generated from the video modality have been
investigated in prior literature to model collaborative problem solv-
ing. Typical features include face tracking [32], facial expressions
[33], body movements [39], and distance metrics between learners
[6]. Facial behaviors can indicate impasse-related phenomena (e.g.
confusion) through movements such as brow lowering and eyelid
tightening [13]. In this paper, we used the OpenFace 2.0 facial be-
havior analysis toolkit?, which supports accurate facial landmark
detection, head pose estimation, eye-gaze direction estimation, and
facial Action Unit (AU) recognition for videos containing a single
face or multiple faces. We used the multiple faces mode to extract
three visual features generated from the video modality: eye gaze,
head pose, and facial Action Units (AUs).

In each detected face in each video frame, OpenFace generated a
120-dimensional eye gaze vector (112 eye landmarks, 6 eye direction
vectors, 2 eye direction in radius), a 6-dimensional head position
vector which represents the location of the head with respect to
the camera, and a 35-dimensional facial AU vector, including 17
facial AU intensity (0 to 5) features, and 18 facial AU presence (0-
absence or 1-presence) features. Facial AUs, which are related to
the movements of an individual’s facial muscles, have been used
in the Facial Action Coding System!? to taxonomize human facial
movements by their appearance on the face. Facial AUs have been
used to measure both individual learners’ tutoring outcomes [13]
and interaction level during collaborative learning [21].

“https://github.com/TadasBaltrusaitis/OpenFace
Ohttps://www.cs.cmu.edu/~face/facs. htm
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4.4 Feature Aggregation

For linguistic features, word embeddings were concatenated to
form the feature vector for each turn exchange. Zero padding!!
was then applied to features of all short turn exchanges to ensure a
standard feature dimension for model training. We used a standard
word length of 47, which was the maximum length of all turn
exchanges in the corpus. For acoustic and visual features, frame-
level features were first averaged across a small non-overlapping
time window, and then concatenated to form the feature vector for
each turn exchange. Following feature aggregation methods in prior
work [32, 34], we selected the time window of 500 milliseconds.
We did not choose a longer length because acoustic features (e.g,
pitch) could vary over a longer time, which would lead to losing
fine-grained details. Finally, zero padding was also applied with a
standard length of 124, since the maximum elapsed time interval
for turn exchanges in the corpus was 62 seconds.

5 EXPERIMENTS AND RESULTS

We built several supervised unimodal and multimodal models trained
on the linguistic, acoustic, and visual features to detect Impasse mo-
ments. Our models (dode available on Github!?) were implemented

in Keras with a Tensorflow backend. We conducted five-fold cross-
validation to train and evaluate the models, and the train-test ratio

was set to 80% for training and 20% for testing. We evaluated all

trained models with F-1 score, combined with precision and recall

for both the Impasse class and the Non-Impasse class.

Uhttps://www.tensorflow.org/guide/keras/masking_and_padding
2https://github.com/yingbo-ma/Detecting-Impasse- LAK2022
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Table 3: Testing results for SVM classifiers trained on unimodal features. Label distribution: Impasse (17.5%) and Non-Impasse
(82.5%). Columns: P = Precison, R = Recall, F = F-1 Score, A = Accuracy.

Impasse Non-Impasse

A

Modality Unimodal Feature P R F P R F
TF-IDF 0.19 0.65 0.30 0.85 0.50 0.64 0.52
Linguistic Word2Vec 0.25 0.68 0.37 0.84 0.70 0.76 0.61
& Fine-tuned BERT 0.32 0.70 0.44 0.84 0.77 0.80 0.71
Fine-tuned BERT + Speaker Embedding 036 072 048 083 076 079 0.76
Loudness 015 023 019 086 064 073  0.61
Pitch 0.19 0.27 0.22 0.86 0.68 0.75 0.64
Audio Jitter + Shimmer + Spectral Flux 017 030 020 085 0.68 074  0.62
MFCCs 0.17 0.56 0.26 0.83 0.76 0.79 0.68
VGGish Audio Embedding 0.15 0.62 0.24 0.86 0.43 0.57 0.46
Eye Gaze 0.17 0.63 0.26 0.87 0.34 0.49 0.40
Video Head Position 0.18 0.43 0.25 0.85 0.59 0.69 0.56
Facial AUs 0.20 0.59 0.31 0.85 0.68 0.75 0.66

5.1 Identifying Predictive Unimodal Features

We trained Support Vector Machine (SVM) classifiers with each of
the unimodal features to identify predictive unimodal features for
the task of impasse detection. SVMs have shown strong classifi-
cation performance, especially for small-sized datasets. We used
the SVM classifier from scikit-learn!3 with default configurations.
Since the label distribution of Impasse samples (17.5%) and Non-
Impasse samples (82.5%) within our corpus is highly imbalanced,
we used down-sampling training with the RandomUnderSampler
from imblearn'*. Without mitigating the effect of the label imbal-
ance, the classifiers would have poor performance for recognizing
Impasse samples, as they would have been trained mostly on data
with Non-Impasse samples. Table 3 shows the impasse classification
performance trained on unimodal features.

In the linguistic modality, semantic features outperformed sta-
tistical features. The Fine-tuned BERT + Speaker Embedding-based
classifier yielded the best impasse detection performance, with the
highest F-1 score of 0.48 for Impasse and the highest overall accu-
racy of 0.76 for two classes. The TF-IDF-based classifier performed
the worst at differentiating impasse and non-impasse, with the
lowest accuracy of 0.52. In the audio modality, spectral domain
acoustic-prosodic features (Pitch, MFCCs) outperformed time do-
main features (Loudness), and the MFCCs-based classifier yielded
the highest F-1 score of 0.26 for Impasse and the highest accuracy of
0.68. The VGGish-based classifier performed worse than classifiers
trained on simple acoustic-prosodic features. In the video domain,
facial muscle movements outperformed eye gaze directions and
head positions, and the Facial AUs-based classifier achieved the
highest F-1 score of 0.31 for Impasse and the highest accuracy of
0.66. The eye gaze-based classifier performed the worst, with the
lowest accuracy of 0.40.

5.2 Examining the Performance of Multimodal
Features

Identifying predictive unimodal features helped with filtering out

noisy features that potentially had low correlation with impasse

detection. Next, we examined the performance of combining these

predictive unimodal features into a multimodal model. For the best

Bhttps://scikit-learn.org/stable/modules/generated/sklearn.svimn.SVC.html
4https://pypi.org/project/imbalanced-learn
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unimodal features, we selected Fine-tuned BERT + Speaker Embed-
ding from the linguistic modality, MFCCs from audio, and Facial
AUs from video, based on the result from Table 3. We experimented
with four different combinations of modalities: Linguistic + Audio,
Linguistic + Video, Audio + Video, and Linguistic + Audio + Video.

We used a concatenation layer to transform features from dif-
ferent modalities into a single multimodal feature vector. Before
concatenating unimodal feature vectors into a single multimodal
feature vector, we applied z-score normalization to all the features
by subtracting their mean value and dividing by their standard
deviation. Next, we provided the concatenated multimodal feature
vector as the input to the classifier to perform the binary classifi-
cation task. We also compared the performance of two different
classifiers for this task: SVM and Multi-layer Perceptron (MLP). We
chose linear SVM for its strong performance on small-sized datasets
and MLP to examine the performance of a non-linear classifier. The
MLP classifier contains two feed-forward layers with an embedding
size of 128, and two dropout layers with a rate of 0.5 were added to
each linear layer respectively to alleviate over-fitting. The Sigmoid
activation function was used in the last output layer to generate
binary classification results. Model weights were updated using an
Adam optimizer with the learning rate of 1 x e>. These models
were trained for up to 50 epochs, stopping early if validation loss
did not decrease for 15 epochs. Fig 3 shows an example multimodal
Linguistic + Audio + Video model. The other multimodal models
followed the same structure with a subset of the modalities.

Table 4 shows the impasse classification performance of models
trained on features combined from different modalities. The results
showed that the combination of predictive unimodal features from
linguistic, audio and video outperformed all other multimodal com-
binations for both SVM and MLP classifiers. For the same feature
combination, the MLP classifier slightly outperformed the SVM clas-
sifier. The multimodal Linguistic + Audio + Video model trained
with MLP classifier achieved the best impasse detection perfor-
mance, with highest F-1 score of 0.65 for Impasse and the highest
overall accuracy of 0.84 for two classes.

6 DISCUSSION

This paper explores the task of detecting impasse moments within
collaborative problem solving activities in middle school classrooms.


https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://pypi.org/project/imbalanced-learn
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Figure 3: Architecture of the Linguistic + Audio + Video model. The inputs were linguistic, acoustic, and visual features for
each turn exchange. The early-fused multimodal feature vector was fed into an SVM or MLP classifier.

Table 4: Results of multimodal combinations of linguistic features (Fine-tuned BERT + Speaker Embedding), acoustic features

(MFCCs), and visual features (Facial AUs).

Impasse Non-Impasse

A
Modalities Combination P R F P R F

Linguistic + Audio 0.34 0.76 0.48 093 0.88 0.90 0.78

SVM Linguistic + Video 043 0.78 0.55 094 0.85 0.88 0.80
Classifier Audio + Video 025 064 036 085 0.72 0.77 0.69
Linguistic + Audio + Video 055 0.77 0.63 091 090 0.90 0.81

Linguistic + Audio 041 079 055 091 090 09 081

MLP Linguistic + Video 046 0.83 0.60 095 0.87 091 0.82
Classifier Audio + Video 0.28 070 039 084 0.77 0.80 0.72
Linguistic + Audio + Video 056 0.79 0.65 096 085 0.90 0.84

Next, we discuss our results with respect to our two research ques-
tions.

6.1 RQ1. Predictive unimodal features to detect
impasse during dyadic collaborative
interactions.

6.1.1 Linguistic. In the linguistic modality, we experimented with

two feature representation methods: the statistical method and
the semantics-based method. The results showed that the statisti-
cal method (TF-IDF) performed worse than the semantic methods
(Word2Vec and the BERT methods). Table 5 shows the most fre-
quently spoken words and phrases in both Impasse and Non-Impasse
samples, with seven out of ten words or phrases spoken in both
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classes. This suggested that it is insufficient to differentiate impasse
and non-impasse by counting the appearance of signal words or
phrases that express disagreement or stuck (e.g., “wait”, “do not”,
“not know”). Within the semantic methods, fined-tuned BERT with
speaker embedding outperformed Word2Vec and fine-tuned BERT.
It is not surprising that the fined-tuned BERT performed better than
Word2Vec, since BERT models not only capture a static semantic
meaning but also a contextualized meaning compared to Word2Vec.
Meanwhile, the additional speaker switch information provided by
speaker embedding provides the model with more context to help
disambiguate the meanings of utterances. For example, the phrases
“wait”, “i do not think” spoken later by the second learner in a turn
exchange were usually related to an impasse-disagreement moment,
and the phrase “i do not know” spoken both by both learners in a
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Table 5: Top 10 (from left to right) most frequently spoken unigrams and bigrams in Impasse and Non-Impasse classes. Uni-
grams and bigrams are bolded if they appeared in both classes.

Unigram
Impasse “it “is” i “wait” “do” “to” “the” “not” “no” “we”
Non-impasse “it” “is” “the” 47 “t0” “okay” “we” “that” oh “do”
Bigram
Impasse “it is” “do not” “i do” “not know”  “wait wait”  “i think”  “nono” “ am” “thatis”  “have to”
Non-impasse “it is” “and then” “do not” “iam” “that is” “have to” “ido” “i think” “to do” “we have”

Table 6: Top 5 (from left to right) detected facial AUs from both two learners in a dyad.

Impasse AU 1 AU 2 AU 23 AU 15 AU 4
Inner Brow Raiser ~ Outer Brow Raiser Lip Tightener Lip Corner Depressor Brow Lowerer
Non-Impasse AU 1 AU 2 AU 20 AU 15 AU 25
Inner Brow Raiser ~ Outer Brow Raiser Lip Stretcher Lip Corner Depressor Lips Part

turn exchange was usually related to an impasse-no-sufficient-ideas
moment.

6.1.2  Audio. In the audio modality, we compared a set of acoustic-
prosodic features and the VGGish audio spectrogram embedding
method. The VGGish audio spectrogram embedding performed
worse than acoustic-prosodic features. Within the set of acoustic-
prosodic features, spectral domain features (e.g. Pitch, MFCCs)
generally outperformed time domain features (e.g. Loudness, Shim-
mer). Figure 4 compares the the pitch and loudness (plotted by
Praat!®) of an Impasse-Disagreement and a Non-Impasse audio seg-
ment. As illustrated on the impasse plot, when learner B started
saying “No, it’s not supposed...”, the pitch significantly rose while the
loudness was steady compared to previous moments when learner
A was talking. The non-impasse plot shows that when learner B
started saying “No, you didn’t...”, neither pitch nor loudness rose
significantly compared to previous moments when learner A was
talking. This phenomenon potentially suggests that measuring the
pitch variance when the second learner started talking could be an
effective way to detect impasse moments when learners engage in
argument and cannot reach an consensus. Our finding is aligned
with prior work [19] in which the authors observed that the syn-
chrony in the rise and fall of the pitch between two learners was
the most significant acoustic-prosodic feature of when rapport was
present in collaborative dialogues.

6.1.3  Video. In the video modality, we experimented with eye
gaze, head position, and facial AUs, all of which were automatically
generated with the OpenFace 2.0 facial behavior analysis toolkit.
The results showed that the presence and intensity of facial AUs
outperformed eye gaze and head position. Specifically, we observed
that the mutual presence of some common facial AUs from both
learners could be indicative a dyad’s impasse moments. Table 6
shows the most frequently present facial AUs detected from both
learners. As illustrated on the table, the most distinctive facial AU
patterns for detecting impasse were AU 23, Lip Tightener, and AU
4, Brow Lowerer. AU 20, Lip Stretcher, and AU 25, Lips Part, were
most predictive for non-impasse.

Bhtps://www.fon.hum.uva.nl/praat
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6.2 RQ2. Multimodal feature fusion for
detecting impasse during dyadic
collaborative dialogue.

A main thrust of our work was to automatically detect impasse
moments with supervised learning models and to identify the best
multimodal feature combinations from among those we considered.
After selecting the best-performing unimodal features within each
modality, we experimented with four different modality combina-
tions. The results showed that Linguistic + Audio + Video (F1 Score
= 0.65) yielded the best impasse detection performance, and Audio
+ Video (F1 Score = 0.39) performed the worst. There are several
important implications behind these results. First, all of our multi-
modal models outperformed their unimodal models (e.g., the Audio
+ Video model outperformed unimodal Audio / Video models, the
Linguistic + Audio model outperformed unimodal Linguistic / Au-
dio models), which indicated that combining modalities improves
impasse detection performance. Second, the close performance from
the Linguistic + Video model and the Linguistic + Audio + Video
model suggested that adding acoustic-prosodic features to the Lin-
guistic + Video model did not make a substantial difference. As
we discussed in section 6.1.2, the significant rise in pitch when the
second learner started talking was more correlated with impasse
moments when learners expressed disagreement; however, this pat-
tern may not be observed with impasse moments when learners are
both stuck and do not have sufficient ideas to proceed. The noisy
classroom environments may be another potential reason for the
poor impasse detection performance of acoustic-prosodic features:
Our corpus was collected with middle school students collaborat-
ing face-to-face in their classrooms; when dyads were engaging in
collaborative problem solving tasks, the background speech from
other dyads was audible. Sudden high-pitched background noises
(e.g., a chair moving) were also an issue. In these noisy cases, acous-
tic features (and linguistic features if the texts were transcribed
with automatic speech-to-text services) would not be as reliable as
visual features. Fig 5 (shown on the next page) depicts three sam-
ples (two impasse and one non-impasse) and their corresponding
classification results from different modality combinations.


https://www.fon.hum.uva.nl/praat
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Figure 4: Top: Impasse-Disagreement. The pitch (blue) rose significantly when learner B started talking while the loudness
(green) was steady. Bottom: Non-Impasse. The pitch (blue) and loudness level (green) were steady when learner B started talking.

6.3 Limitations.

The current work has several important limitations. First, our an-
notation was based on textual transcripts, and the video and audio
segments of our corpus included the speech of each turn along
with any silence that elapsed before the next turn exchange started.
Therefore, we could not explicitly model silence and pauses dur-
ing dyads’ collaborative dialogue, and these phenomena may hold
useful information that can help to more accurately detect impasse:
for example, a long silence during a dyad’s interaction may suggest
learners being stuck. Second, there was one ubiquitous limitation
in facial detection work: OpenFace sometimes failed to detect both
learners’ faces when they were not directly facing the camera, or in
the case of occlusion. Finally, our corpus size was relatively small.
The recordings were collected from just 46 middle school learners;
therefore, the predictive unimodal features found in this paper may
not generalize well to students in other age groups or learning
environments, such as online learning.

7 CONCLUSION AND FUTURE WORK

Impasse occurs when learners cannot not move forward because
they have differing opinions or insufficient ideas. While impasse
presents important opportunities for learning, it can also negatively
impact problem solving when it persists for too long. By automat-
ically detecting impasse moments during collaborative problem
solving, we can support the development of systems that better
support learners. This paper has presented the first attempt to
automatically detect dyadic impasse moments during collabora-
tive problem solving. We combined linguistic features from BERT,
acoustic-prosodic features from openSMILE, and visual features
from the OpenFace facial behavior analysis toolkit. The results re-
vealed a series of important verbal and non-verbal indicators for
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detecting impasse, and the multimodal Linguistic + Audio + Video
model performed the best for this task.

These results highlight several important directions for future
work. First, while the features used in this paper were promising,
other features should be investigated (e.g. silence and pauses during
speech, body movements). It is also necessary to investigate fea-
tures that are less hand-crafted as we are moving toward detecting
impasse in real-time. Second, the multimodal model’s performance
could potentially be increased with more optimal classifier configu-
rations or effective feature extraction methods (e.g., representing
speaker change with pitch variations). Third, future work should
examine generalizability of the findings in this work using larger
datasets, including data from online learning environments. To
create an impasse detector that could be used in many different
learning scenarios, it will also be important to determine how the
features of impasse moments differ with learners of different ages
and cultures. Finally, we aim to investigate impasse detection in
multi-party interactions among groups of three or more learners.

Impasse moments provide valuable and beneficial learning op-
portunities for team members during their collaborative problem
solving process. The work presented in this paper makes a step
toward automatically detecting the impasse resolution process in
real-time. This line of investigation has the potential to improve
the learning experience by supporting timely interventions when
impasse persists.
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Figure 5: Top: This Impasse sample has acoustic indicators (pitch raised) for impasse. It was correctly classified by Linguistic +
Audio model and Linguistic + Audio + Video model, but misclassified by Linguistic + Video model. Middle: This Impasse sample
has visual indicators (co-present AU 4 from two learners’ faces) for impasse. It was correctly classified by the Linguistic + Video
and Linguistic + Audio + Video models, but misclassified by the Linguistic + Audio model. Bottom: This Non-Impasse sample
has neither acoustic indicators nor visual indicators for impasse. It was was correctly classified by the Audio + Video and

Linguistic + Audio + Video models, but misclassified by the Linguistic + Audio and Linguistic + Video models.
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