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ABSTRACT
Collaborative learning is a complex process during which
two or more learners exchange opinions, construct shared
knowledge, and solve problems together. While engaging in
this interactive process, learners’ satisfaction toward their
partners plays a crucial role in defining the success of the
collaboration. If intelligent systems could predict peer sat-
isfaction early during collaboration, they could intervene
with adaptive support. However, while extensive studies
have associated peer satisfaction with factors such as so-
cial presence, communication, and trustworthiness, there is
no research on automatically predicting learners’ satisfac-
tion toward their partners. To fill this gap, this paper in-
vestigates the automatic prediction of peer satisfaction by
analyzing 44 middle school learners’ interactions during col-
laborative coding tasks. We extracted three types of fea-
tures from dialogues: 1) linguistic features indicating se-
mantics; 2) acoustic-prosodic features including energy and
pitch; and 3) visual features including eye gaze, head pose,
facial behaviors, and body pose. We then trained several re-
gression models to predict the peer satisfaction scores that
learners received from their partners. The results revealed
that head position and body location were significant indi-
cators of peer satisfaction: lower head and body distances
between partners were associated with more positive peer
satisfaction. This work is the first to investigate the mul-
timodal prediction of peer satisfaction during collaborative
problem solving, and represents a step toward the develop-
ment of real-time intelligent systems that support collabo-
rative learning.
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1. INTRODUCTION
Collaborative learning benefits learners in numerous ways,
such as enhancing critical thinking [31], developing social
skills [29], and improving learning gains [32]. During collab-
orative learning, partners may bring different ideas to solve
a problem, defend and evaluate their perspectives, and have
a dynamic interaction with each other to produce a shared
solution [18]. This relationship between partners can be a
decisive factor for the success of the collaboration and pos-
itive team experience [9], and the partners’ satisfaction to-
ward each other can have a significant impact on their task
performance [52] and learning outcomes [20]. Previous lit-
erature suggests that students’ interactions may not be pro-
ductive and they may face challenges with their partner [25,
6], which could discourage them from working with partners
in the future [44]. In a classroom setting, teachers may not
have the resources to detect whether the partners in a team
have positive attitudes toward each other and enjoy work-
ing together. Therefore, it becomes even more important to
develop intelligent and adaptive technologies to predict peer
satisfaction during collaborative activities.

Despite the increase in the development of techniques and
models to analyze students’ interactions during collabora-
tive learning [49, 45], there is no research on automatically
predicting peer satisfaction during collaboration. Current
studies that analyzed learners’ satisfaction during collabo-
ration have revealed important factors such as social pres-
ence (sense of being with each other [46, 27]), frequency and
quality of team communication [28], and mutual trust be-
tween group members [53]). However, most of these post-hoc
studies relied on manual approaches (e.g., analyzing post-
study attitude survey [22] or open-ended questions [28]). On
the other hand, multimodal learning analytics research has
created new opportunities to automatically analyze learn-
ers’ interactions from multiple modalities (e.g., speech, fa-
cial expressions, body gestures), and provide insights into
the learning process from different dimensions [2]. For ex-
ample, recent studies successfully classified critical facets of
collaborative problem solving process with multimodal fea-
tures (linguistic, acoustic-prosodic, facial expressions, and
task context) derived from groups of learners’ collaborative
dialogues [48]. However, multimodal learning analytics has
not yet been used to automatically predict peer satisfaction
from learners’ interactions.



Aligned with this motivation, our goal in this paper is to in-
vestigate the automatic prediction of peer satisfaction dur-
ing collaborative learning. We specifically address the fol-
lowing two research questions (RQs):

• RQ 1: What are the most predictive unimodal features of
peer satisfaction during collaboration?

• RQ 2: Does multimodal feature fusion improve peer sat-
isfaction prediction compared to the best-performing uni-
modal model?

To answer these research questions, we analyzed audio and
video data collected from 44 middle school learners who
worked in pairs on a series of collaborative coding activi-
ties. After participating in coding activities, each learner
reported their overall satisfaction with their partners. To
answer RQ 1, we examined the performance of the follow-
ing features extracted from learners’ collaborative dialogues,
including: 1) linguistic features indicating semantics from
Word2Vec [35] and pre-trained BERT [15]; 2) acoustic-prosodic
features such as energy and pitch extracted with openSMILE
[17]; 3) eye gaze, head pose, and facial AUs extracted with
OpenFace [1]; and 4) body pose extracted with OpenPose
[3]. We followed a state-of-the-art methodology [50] that
preserves the sequential nature of the features across the
collaborative session.

The experimental results revealed two significant predictors.
The first significant predictor was head position (x-axis),
generated from OpenFace, which was the horizontal distance
of a learner’s head from the camera (located in the middle
of two learners to collect video recordings). The second sig-
nificant predictor was body key points (x-axis), generated
from OpenPose, which was the the horizontal pixel location
of a learner’s eight upper body key points (e.g., nose, neck,
and shoulders). These results indicated that learners who
had lower head and body distances from their partners were
more likely to receive higher peer satisfaction scores. To an-
swer RQ 2, we evaluated the model performance of several
early-fused multimodal features, and the results showed that
the multimodal features investigated in this study did not
significantly improve the prediction accuracy of peer satis-
faction compared to the best-performing unimodal feature.

This study provides two main contributions: 1) we present
the results from extensive experiments evaluating both a
variety of predictive features and a selection of sequential
models; 2) and we identify two interpretable and meaningful
learner behaviors that can be predictive of peer satisfaction.
To the best of our knowledge, this is the first study to in-
vestigate the automatic prediction of peer satisfaction with
multimodal features extracted from learners’ interactions.

The rest of the paper is organized as follows: Section 2
presents the related work; Section 3 describes the dataset
used for this study; Section 4 details the features we inves-
tigated;. Section 5 elaborates on the peer satisfaction pre-
diction models; Section 6 presents the experimental settings
and results; Section 7 discusses the implications of exper-
imental results; and finally, section 8 concludes the paper
and discusses future work.

2. RELATED WORK
Interpersonal interactions and soft skills play an important
role in students’ learning experiences and teams’ success
during collaboration [11]. Previous research has emphasized
that partners may have trouble while collaborating on a task
together for a variety of reasons, and many social factors
can have an impact on peer satisfaction. For example, So et
al. [46] recruited 48 graduate students who collaborated on
a healthcare project. They found that learners’ perceived
social presence and emotional bonding were important fac-
tors for peer satisfaction. Zeitun et al. [52] examined the
relationship between team satisfaction and course project
performance among 65 groups of students. They found that
team satisfaction (toward partners and their collaborative
work) were positively related to group performance only for
American students, and there was no significant difference in
the satisfaction and performance regarding gender. Katuka
et al. [26] analyzed the relationship between dialogue act
and peer satisfaction from 18 pairs of middle school stu-
dents. They identified six sequences of dialogue acts (e.g.,
questions, clarifications) that were positively related to sat-
isfaction. Despite the insights of peer satisfaction provided
by the aforementioned studies, most of these studies relied
on manual approaches (e.g., post-study attitude survey or
open-ended questions), which does not enable the automatic
prediction of peer satisfaction.

In recent years, there has been an increasing interest in us-
ing multimodal learning analytics (MMLA) techniques that
combine multiple data streams (e.g., speech and spoken words
[41], text message and facial expressions [14]) to analyze
student collaborative interactions. For example, Spikol et
al. [47] used MMLA to estimate the success of collabora-
tion with face tracking, hand tracking, and audio record-
ing. They found that distances between learners’ hands and
faces were two strong indicators of group performance, and
lower distances indicated that it was more likely that suc-
cessful collaboration occurred among students. Echeverria
et al. [16] applied MMLA in a healthcare setting in which
nurses collaborated in groups, with their audio, movement,
and physiological data collected and analyzed. The authors
demonstrated that integrating more sources of data multi-
modal data provided more contextual details of group activi-
ties during collaboration process. In another study, Liu et al.
[30] used MMLA to understand learners’ knowledge model
refinement process during collaboration. They were able to
better predict learners’ knowledge models when they com-
bined multiple data streams (i.e., audio, screen video, web-
cam video, and log files), which convey important contextual
information about student learning. However, to the best of
our knowledge, there is no research on automatic prediction
of peer satisfaction using multimodal features during collab-
orative learning. Our study extends this body of MMLA
research on learners’ interactions. We investigate different
modalities (linguistic, acoustic-prosodic, and visual) for au-
tomatically predicting peer satisfaction.
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Figure 1: Left : A sample script created with Snap!. Right : Two middle school learners collaborating on a pair programming
task. In the captured moment, the learner in the left side of the frame is the driver and the learner on the right is the
navigator ; their collaborative interaction is video-recorded with a front-facing camera and audio-recorded with each learner
wearing a lavalier microphone.

3. DATASET

3.1 Participants and Collaborative Activities
Our dataset was collected from 44 learners in 7th grade
classrooms in a middle school in the southeastern United
States during two semesters (Spring and Fall 2019). Out
of 44 learners, 29 (65.9%) identified themselves as females
and 15 (34.1%) as males. The distribution of race/ethnicity
of these learners included 41.3% self-reporting as White,
26.1% Asian/Pacific Islander, 19.5% Multiracial, 8.7% His-
panic/Latino, 4.3% Black/African American, and 1.9% Other.
The mean age was 12.1 with ages ranging from 11 to 13.

The learners collaborated on a series of coding activities in
which they practiced fundamental CS concepts such as vari-
ables, conditionals, and loops using Snap! block-based pro-
gramming environment [7]. The learners followed the pair
programming paradigm, in which each pair shared one com-
puter and switched roles between the driver and the nav-
igator during the science-simulation coding activity (Fig-
ure 1). The driver is responsible for writing the code and
implementing the solution, while the navigator provides sup-
port by catching mistakes and providing feedback on the
in-progress solution [4].

3.2 Data Collection and Text Transcription
The collaborative coding session of each pair was recorded
at 30 fps in 720p through a front-facing detached camera,
and each child wore a lavalier microphone without active
noise cancelling. The audio was recorded by digital sound
recorders with a sample rate of 48KHz. After the audio/video
data collection process was finished, an online manual tran-
scription service [42] generated the textual transcript for
each pair. The transcripts included three pieces of infor-
mation for each spoken utterance: (1) Starting Time, in the
form of hour :min:sec; (2) Speaker, in the form of S1 (the
learner sitting on the left of the video) or S2 (the learner
sitting on the right); and (3) Transcribed Text. Each collab-
orative coding session took around 30 minutes. In total, the
corpus included 12 hours and 18 minutes of audio and video
recordings, with 10,265 transcribed utterances.

3.3 Peer Satisfaction Post Survey
After participating in the collaborative coding sessions, each
learner completed a peer satisfaction post survey. To the
best of our knowledge, there is no existing validated survey
for peer satisfaction in the pair programming context, so
we developed a 6-item survey based on previous surveys on
peer satisfaction. Sample questions in the peer satisfaction
survey included: “My partner answered my questions well”,
“My partner listened to my suggestions”, and “My partner
often cut my speech”. Each of the six items in the survey was
measured on a 5-point Likert scale, ranging from 1 (strongly
disagree) to 5 (strongly agree).

Figure 2 (Left) shows the distribution of the peer satisfac-
tion post survey responses from 44 learners. The distribu-
tion of the satisfaction scores shows that most of the learners
agreed or strongly agreed that they were satisfied with the
overall interaction with their partner. To determine whether
to treat the six post-survey items as a single item or mul-
tiple items, we conducted a principal component analysis
(PCA). The results of PCA suggested proceeding with only
one derived outcome variable, which we refer to as Satis-
faction score (the average score of six items). This derived
outcome explains 52% of the variation across all six survey
items, with an eigenvalue of 3.15. Figure 2 (Right) shows the
distribution of the averaged Satisfaction score. The mean
value of the Satisfaction score is 4.3 (SD=0.6) out of 5, with
a maximum value of 5.0, and a minimum value of 2.2.

4. FEATURES
In this section, we introduce the feature extraction process
from the audio (section 4.1), video (section 4.2), and lan-
guage (section 4.3) modalities. Then we describe the feature
padding process (section 4.4) that prepared the extracted
features for model training. Table 1 shows the features this
study investigated, and their corresponding dimensional de-
tails after the feature padding process.
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Figure 2: Left : distribution of peer satisfaction post-survey items from from 44 learners. Right : distribution of the continuous
averaged Satisfaction score (mean = 4.3, SD = 0.6).

Table 1: Utterance-Level Features

Modality Feature Name Vector Dimension*

Audio

Loudness 638, 704, 990
Pitch 580, 640, 900

Shimmer 116, 128, 180
Jitter 116, 128, 180

MFCCs 928, 1024, 1440

Language

Word Count 1
Speech Rate 1
Word2Vec 4,200

Pre-trained BERT 768

Video

Eye Gaze Directions 784
Head Directions 294

Head Position (x-axis) 98
Head Position (y-axis) 98
Head Position (z-axis) 98

Facial AUs 3,430
Body Key Points (x-axis) 784
Body Key Points (y-axis) 784

* For every audio-based feature, the three vector dimensions
resulted from different speech lengths (29s, 32s, and 45s)
after applying three different silence removal thresholds (-
6, -16, and -30 dBFS) respectively. For language-derived
features, the maximum number of spoken words was 42.
For video-derived features, the maximum time length of
video segments was 49s.

4.1 Audio-based Features
Simple acoustic-prosodic features (e.g., sound level, syn-
chrony in the rise and fall of the pitch) derived from au-
dio have proven to be effective in predicting learners’ en-
gagement level [49] and estimating group performance on
solving open-ended tasks. [47]. In our study, we extracted
audio-derived features on the corresponding audio segment
for each utterance. Because we only obtained the Starting
Time of each utterance from the online transcription ser-
vice, and not the Ending Time, the raw audio segments in
our corpus also contain silence (background noise when a

learner stops talking) that elapsed before the next utterance
started. To mitigate the potential negative influence of this
silence in our audio segments, we used pydub.detect silence,
a function in the pydub [38] library to detect the time of
end-of-utterance in a given audio segment. The function re-
quired a pre-defined parameter: silence removal threshold
(any audio lengths quieter than this will be considered as si-
lence). For each raw audio segment, we used three different
silence thresholds to produce three different audio segments:
-6 dBFS (half of the audio’s maximum level), -16 dBFS (de-
fault setting of the function), and -30 dBFS (low enough to
avoid losing actual speech lengths).

After removing the potential silence contained in raw audio
segments, we used openSMILE v2.2, an open-source acous-
tic feature extraction toolkit, for automatic extraction of
the following five types of audio-based features within a 20-
ms frame and a 10-ms window shift. The five categories of
audio-based features are as follows:

1. Loudness measures the energy level of the signal. For
each audio frame, 11 loudness-related features were ex-
tracted.

2. Pitchmeasures the frequency scale of a signal. For each
audio frame, 10 pitch-related features were extracted.

3. Shimmer measures how quickly the loudness of the sig-
nal is changing. For each audio frame, 2 shimmer-
related features were extracted.

4. Jitter measures how quickly the frequency of the sig-
nal is changing. For each audio frame, 2 jitter-related
features were extracted.

5. MFCCs (Mel-Frequency Cepstral Coefficients) measures
the shape of the signal’s short-term spectrum. For
each audio frame, 16 MFCCs-related features were ex-
tracted.



Figure 3: An example of the video-derived feature extraction process for both learners in a specific video frame. Left : eye gaze
direction (green vectors), head pose (blue 3D bounding boxes), and facial AUs (recognized later) extracted with OpenFace.
Right : upper body key points (e.g., nose, neck, and shoulders) extracted with OpenPose.

4.2 Language-based Features
Linguistic features extracted from spoken utterances have
been used to model collaborative problem solving skills and
predict collaborative task performance [37]. In our study,
multiple commonly used statistical and semantic linguistic
features were extracted for each spoken utterance. The four
categories of language-derived features are as follows:

1. Word Count For each utterance, word count was cal-
culated as the number of words.

2. Speech Rate For each utterance, speech rate was cal-
culated as the number of words divided by the number
of elapsed seconds in the utterance, to produce words
per second.

3. Word2Vec is a semantic method which learns word
associations from the text, and groups similar words
together in a vector space based on their semantics.
We train our Word2Vec model with gensim, an open-
source natural language processing library. The de-
fault settings of parameters were used, in which the
dimension of each word embedding was set to 100, with
a sliding window size of 5.

4. Pre-trained BERT is a language model trained on a
large amount of data (e.g., texts from Wikipedia and
books) in a self-supervised way. Similar to Word2Vec,
BERT represents semantics of words in a vector space.
In this study, we used the BERT-base-uncased model,
which is a publicly available BERT model trained only
on English texts with the hidden size of 768. With this
pre-trained BERT, we generated one 768-dimensional
vector for each utterance.

4.3 Video-based Features
A variety of features generated from video modality have
been investigated in prior literature modeling collaborative
problem solving. For example, eye gaze has proven effective
in evaluating learners’ attentiveness [43, 24] and learning
performance [5, 40]; head pose has also been used for assess-
ing learners’ collaborative problem solving competence [13];
facial action units (AUs) have been used to measure both
individual learners’ tutoring outcomes [21] and interaction
level during collaborative learning [33]. Body pose has been

used for analyzing learners’ engagement level [39] and mod-
eling collaborative problem solving competence [13]. In our
study, video-derived features were extracted from the corre-
sponding raw video segment of each utterance. We used the
OpenFace v2.0 facial behavior analysis toolkit and Open-
Pose v1.7 body key points detection toolkit to extract the
following four categories of video-based features (See Fig-
ure 3):

1. Eye Gaze Direction refers to the direction in which an
eye looks. For each detected face per video frame, 8 eye
gaze direction-related features were extracted. They
included 3 eye gaze direction vectors (x direction, y
direction, and z direction) for each eye, and 2 eye gaze
directions in radians averaged for both eyes.

2. Head Pose refers to head position and direction. For
each detected face per video frame, 6 head-related fea-
tures were extracted with OpenFace, including three
head position vectors (x direction, y direction, and z
direction) representing the location of the head with
respect to the camera in millimeters, and three head
direction vectors in radius with respect to the camera.
Since the front-facing camera was located in the mid-
dle of two learners during the data collection process,
positive values of the x direction vector and the z di-
rection vector indicate that the learner is sitting on
the right side of the video and away from the camera,
and vice versa. The head position features used in our
study were the absolute values of the x, y, and z direc-
tion vectors, representing the spatial location of each
learner’s head from the camera.

3. Facial AUs refer to the movements of an individual’s fa-
cial muscles. For each detected face per video frame, 35
facial AU-related features were extracted with Open-
Face, including 17 facial AU intensity features (rang-
ing from 0 to 5), and 18 facial AU presence features
(0-absence or 1-presence).

4. Body Pose refers to the location of each joint (e.g.,
neck, shoulders) of the human body, which are known
as key points that can describe a person’s pose. For
each learner appearing in each video frame, the 2D
locations (x direction and y direction) of 8 body key



points, measured in pixels, were extracted with Open-
Pose. These included the locations of each learner’s
eyes, nose, neck, and shoulders. OpenPose supports
real-time detection of 25 full body key points (hand,
facial, and foot key points); however, since our video
recordings only captured learners’ upper bodies, Open-
Pose was not able to detect the locations of some body
points such as hand and foot. Therefore, only 8 body
key points related to learners’ upper bodies were ex-
tracted and used in this study. Because the resolution
of our cameras was 720p, the maximum pixel value of
body key points generated from OpenPose was 1280
pixels in the x direction, and 720 pixels in the y direc-
tion.

4.4 Feature Padding
Spoken utterances naturally vary in time length, and feature
padding is an important step for ensuring the uniform size of
model inputs before training machine learning models. We
averaged the audio-based and video-based features across a
small non-overlapping time window because they were ex-
tracted on the frame level. Following the feature aggregation
methods used in prior works [47, 49], in which the average
time windows of 500 ms and 1000 ms were chosen respec-
tively, we selected the time window of 500 ms. We did not
choose a longer window because audio-based features (e.g.,
pitch) could vary over a longer duration, which would lead
to losing fine-grained details. Finally, post padding (adding
zeros to the end of vectors) was applied on each averaged
feature vector with the maximum time length (29s, 32s,
and 45s) for different silence removal thresholds. For the
Word2Vec-based feature, word embeddings were concate-

nated to form one feature vector for each utterance. Then,
post padding was applied to the Word2Vec-based feature
vector and the BERT-based feature vector with the maxi-
mum number (42) of spoken words.

5. PREDICTION MODELS
Figure 4 depicts the architecture of our peer satisfaction pre-
diction model. For a collaborative coding session of a given
pair (Learner A and Learner B), the model input is a session-
level feature sequence X = [x0, x1, ..., xN−1] for Learner B,
in which N is the number of spoken utterances from the
learner. For each element in X, we used the early fusion
method to generate utterance-level multimodal feature xt =
[at, vt, xt] by concatenating unimodal audio-derived feature
at, video-derived feature vt, and language-derived feature lt.
Before concatenating unimodal feature vectors into a single
multimodal feature vector, we applied z-score normalization
to all the features by subtracting their mean value and di-
viding by their standard deviation.

Our prediction model contains two stages: feature learning
and regression. In the feature learning stage, we followed
the current state-of-the-art methodology [50] that preserves
the sequential nature of dialogue to learn the input feature
sequence X. The sequential model is a two-layer LSTM net-
work with 128 units. We obtained a final 128-dimensional
hidden state hT from the sequential model. During the re-
gression stage of the model, we used hT as input, and fully
connected layers to output a continuous estimated satisfac-
tion score ŷ, in order to approximate the actual Satisfaction
score y rated by Learner A.

Learner A

Sequence X for B: [x0, x1, ..., xN-1]

h0 hN-2 hN-1

h0 hN-2 hN-1

Sequential
model 

[                        ] Last Hidden State
(128-dimensional)

Fully Connected

Estimated  
Satisfaction Score

(continuous)

linear or

sigmoid

Actual  
Satisfaction Score 

Rated from A

Learner B

Interactions  
between A and B 

RNN or

LSTM or

GRU

Calculate loss

Feature 
Learning 

Regression 

Model Input

Figure 4: Architecture of the prediction model. For unimodal modeling, xt (0 ⩽ t ⩽ N − 1) is a unimodal feature vector
(audio at, video vt, or langauge lt). For multimodal modeling, xt is a subset of an early-fused vector [at, vt, xt] (normalized).



Table 2: Regression results of unimodal models. Two highlighted features: Head Position (x-axis) and Body Key Points
(x-axis), significantly reduced the MAE compared to the baseline feature (p-value < .05).

Modality Unimodal Feature MAE p-value (ŷbase and ŷ) R2 (y and ŷ)
Baseline 0.1953 — 0.07
Loudness 0.1981, 0.1790, 0.1796 0.31, 0.19, 0.12 0.02, 0.05, 0.07
Pitch 0.2073, 0.1902, 0.1881 0.25, 0.14, 0.15 0.01, 0.15, 0.03

Shimmer 0.1895, 0.1794, 0.1713 0.12, 0.19, 0.42 0.04, 0.12, 0.20
Jitter 0.1983, 0.1896, 0.1853 0.14, 0.31, 0.31 0.01, 0.08, 0.06

Audio

MFCCs 0.2341, 0.2405, 0.2318 0.19, 0.19, 0.24 0.01, 0.03, 0.03
Word Count 0.1794 0.43 0.07
Speech Rate 0.1790 0.19 0.29
Word2Vec 0.1751 0.09 0.06

Language

Pre-trained BERT 0.1789 0.06 0.08
Eye Gaze Directions 0.1689 0.10 0.21
Head Directions 0.1583 0.09 0.23

Head Position (x-axis) 0.1402 0.03 0.68
Head Position (y-axis) 0.1902 0.21 0.15
Head Position (z-axis) 0.1640 0.09 0.25

Facial AUs 0.1927 0.19 0.11
Body Key Points (x-axis) 0.1376 0.03 0.64

Video

Body Key Points (y-axis) 0.1761 0.39 0.10

MAE : aggregated testing absolute error for all data samples. y: actual satisfaction scores. ŷ: predicted
satisfaction scores with each unimodal feature. ŷbase: predicted satisfaction scores with the baseline
feature. R2: another widely used metric to evaluate a regression task’s level of goodness-of-fit.

Table 3: Regression results of multimodal models. None of the multimodal features significantly outperformed the baseline
feature.

Multimodal Feature MAE p-value (ŷbase and ŷ) R2 (y and ŷ)
Baseline: Body Key Points (x-axis) 0.1376 — 0.64

Head Position (x-axis, z-axis) 0.1484 0.39 0.65
Head Position (x-axis), Head Directions 0.1355 0.17 0.68
Head Position (x-axis), Body Key Points 0.1367 0.10 0.68
Head Position (x-axis), Pre-trained BERT 0.1409 0.13 0.65

Recent research [50] has shown that the type of sequen-
tial model can play an important role for feature learn-
ing. Therefore, we also evaluated the performance of recur-
rent neural network (RNN) and gated recurrent unit (GRU)
models to understand the influence of different sequential
model architectures during feature learning. In addition, we
evaluated the performance of two different output units, sig-
moid and linear functions, to compare between linear and
non-linear regression.

6. EXPERIMENTS AND RESULTS
6.1 Experimental Setups
We implemented the Python code1 for our prediction models
in Keras with a Tensorflow backend. We conducted five-fold
cross-validation to train and validate the models. All la-
bels (y) were normalized (ranging from 0 to 1) before the
model training process because the sigmoid activation func-
tion was used to produce the predicted satisfaction scores ŷ.
We used Adam optimizer with the learning rate of 1×e−3 to
train the prediction model, which was trained for up to 100
epochs. The mean absolute error (MAE) was calculated for
the loss function. After five rounds of cross-validation, we
aggregated the MAE of each fold during the model testing
process.

1https://github.com/yingbo-ma/
Predicting-Peer-Satisfaction-EDM2022

6.2 Investigating Unimodal Features
To identify predictive unimodal features, we compared the
prediction accuracy of each unimodal feature with a ran-
domly generated baseline feature. Followed a common method
of generating uniform random baselines [12, 19], we used the
Python function random.uniform(0, 1), which can be inter-
preted as white noise without any meaningful content. We
then trained the model with the white noise to generate
the random baseline results (error MAEbase and predicted
scores ŷbase). This low baseline allows us to measure the ex-
tent to which each feature predicts the outcome better than
random chance. Next, we trained the model with each of the
unimodal features from Table 1, and generated correspond-
ing MAE and ŷ. A paired-samples t-test [34] between ŷbase
and ŷ checked whether adding that unimodal feature sig-
nificantly reduced error compared to the random baseline.
Table 2 shows the regression results of peer satisfaction pre-
diction models trained on unimodal features.

For audio-derived features, the three values in each col-
umn (from left to right) resulted from different silence re-
moval thresholds (-6, -16, and -30 dBFS). Although time-
domain features (e.g., Loudness, Shimmer) performed better
than frequency-domain features (Pitch, Jitter), as indicated
by lower MAEs, the associated p-values showed that none
of the acoustic and prosodic features significantly outper-
formed the baseline. For video-derived features, we identi-
fied two predictive unimodal features: learners’ head posi-



tions in the x direction (p-value = 0.03), and the locations
of their body key points in the x direction (p-value = 0.03).
Models trained on language-based features yielded similar
MAEs compared to the baseline model; therefore, none of
the language-based features evaluated in this study were pre-
dictive for this task.

The feature space in our study is large compared to the rel-
atively small corpus size. Therefore, identifying predictive
unimodal features helped with filtering out noisy features
that are not useful in predicting satisfaction scores. Next,
we examined the performance of multimodal models by com-
bining the unimodal features that were useful.

6.3 Examining Multimodal Features
For testing the performance of combining multiple features,
we selected the two significant (p<0.05) unimodal features
(Head Position x-axis and Body Key Points x-axis). In addi-
tion, we also selected Head Direction and Pre-trained BERT,
as their p-values are lower than 0.1 (a threshold that has
been used to identify a weak trend or association [23]). We
used the best-performing unimodal model trained on Body
Key Points (x-axis) as the baseline (predicted satisfaction
scores ŷbase), and investigated the p-values of the paired-
samples t-test between the predicted scores ŷ and the base-
line results ŷbase. Table 3 shows the regression results of
peer satisfaction trained on unimodal features.

The results shown in column 2 of table 3 indicated that com-
bining Head Position (x-axis) and Head Directions yielded
the lowest MAE. However, none of these multimodal fea-
tures significantly improved the regression performance com-
pared to the unimodal model.

6.4 Comparing Different Model Architectures
To understand the influence of different sequential models
during feature learning, and compare the performance be-
tween linear and non-linear regression models, we selected
the best-performing unimodal model and examined how pre-
diction accuracy varied under different model architectures.

Table 4 shows the experimental results with different model
architectures. For the selection of different sequential mod-
els, three models provided comparable performances, with
LSTM yielding a slightly lower MAE. As for the selection
of different activation functions, the model predicting sat-
isfaction score with a sigmoid activation functionperformed
better than with a linear function. In addition, although
we observed faster convergence speed with linear, sigmoid
provided more stable training and testing performance (see
Figure 5). As for the selection of the number of layers, the
one-layer LSTM performed similarly compared to two- or
three-layer LSTM.

7. DISCUSSION
This study investigates the prediction of peer satisfaction
using multimodal features from learners’ interactions during
collaborative learning activities. This section discusses the
results with respect to our two research questions, as well
as implications from comparing the performance of different
model architectures.

Table 4: MAEs under different architecture settings.

Sequential Model LSTM RNN GRU
MAE 0.1376 0.1401 0.1382

Output Unit sigmoid linear
MAE 0.1376 0.1741

# of Layers 1 2 3
MAE 0.1359 0.1376 0.1384
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Figure 5: Testing MAEs under different activation functions
(blue-linear, red-sigmoid). linear provided faster converge
speed during training, while sigmoid provided lower MAE
and more numerical stability during testing.

7.1 RQ 1: What are the most predictive uni-
modal features of peer satisfaction during
collaboration?

7.1.1 Audio-based Features
In this study, we investigated several commonly used acoustic-
prosodic features and the results showed that none of these
features were significant predictors of peer satisfaction. Pre-
vious literature has associated learners’ peer satisfaction with
their emotional bonding [46]. Acoustic-prosodic features
have been widely used for detecting speaker emotion de-
tection (positive, neutral, and negative) [10] and predicting
learners’ task performance [47]. However, the results from
this study indicate that the acoustic-prosodic features we
tested may not have the explanatory power to predict peer
satisfaction.

One potential reason for audio features not performing well
in models is if there are periods of silence included in what
the model thinks are periods of speech only. We exam-
ined several different silence removal thresholds (-6, -16, -30
dBFS) and the results indicated that this strategy did not
help with peer satisfaction prediction. A higher silence re-
moval threshold (e.g., -6 dBFS) could help reduce the neg-
ative influence from background noise; however, it is also
more likely to remove learners’ speech. While selecting be-
tween and qualitatively examining different thresholds, we
determined -30 dBFS was optimal for our corpus to balance
between eliminating periods of silence without excessively
cutting off speech. However, acoustic features under that
threshold were not predictive of peer satisfaction.



7.1.2 Language-based Features
We examined several statistical (word count and speech rate)
and semantic (Word2Vec and BERT) features from the lan-
guage modality. Statistical features such as word count per
utterance and speech rate have shown to be associated with
learners’ active participation and turn-taking during collab-
oration [49]. The results from our study showed that there
was a trend toward significance when more semantic infor-
mation was added to the features (p-values for word count,
Word2Vec, and BERT: 0.46, 0.16, 0.06); however, none of
these models yielded statistically significant results for pre-
dicting peer satisfaction (Table 2). Previous literature also
found several sequences of dialogue acts representing speak-
ers’ intentions (e.g., questions followed by clarifications) that
were positively related to peer satisfaction [26], but our re-
sults did not show a direct correlation between semantics
and peer satisfaction. One potential reason may be that the
semantic representation methods used in our study did not
have the same explanatory power as dialogue acts to directly
indicate learners’ intentions.

7.1.3 Video-based Features
Among the several video-based features extracted in this
study, head position and body location on the horizontal axis
were the only two predictive unimodal features. To better
understand how the patterns of these two predictive features
varied among learners with different satisfaction scores, we
selected three groups of five learners and examined their
sessions in more detail. The groups are as follows:

• High satisfaction group: five learners who received the
highest scores (5.0 / 5.0).

• Average satisfaction group: five learners who received the
exact score of 4.3 / 5.0 (mean peer satisfaction score of
our corpus).

• Low satisfaction group: five learners who received the low-
est five scores (all below 3.7 / 5.0).

Figure 6 shows the patterns of horizontal (x-axis) head dis-
tance from the camera, in meters, for the three groups of
learners. For each group, we calculated their averaged Head
Distance (x-axis) over whole sessions. Since the camera was
positioned horizontally in the middle between two learners, if
learners had lower head distance from the camera, this likely
reflects that the learners were sitting closer to one another.
From Figure 6 we could see that learners who received high
satisfaction scores (green) had lower head distances over the
collaborative coding sessions, compared to learners who re-
ceived average (red) and low (blue) satisfaction scores.

Figure 6 also depicts the difference of the head distance vari-
ance over time across the three groups of learners. Learners
who received high satisfaction scores (green) had lower head
distance variance and fewer numbers of sharp distance in-
creases over time, compared to learners who received average
(red) and low (blue) satisfaction scores. A sharp head dis-
tance increase could happen when the learner became dis-
engaged in the collaborative coding tasks (e.g., talking to
learners in other groups). In comparison, for learners in the
high satisfaction group (green), only a small range of head
distance variance over time was observed.

In addition to head distance (x-axis), another predictive uni-
modal feature identified in our study was body key points,
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Figure 6: Head Distance (x-axis) in Meters from OpenFace

such as the location of nose, neck, and shoulders. Figure 7
shows the patterns of neck location (x-axis) in pixels to-
ward the camera for three groups of learners; locations for
other body key points followed relatively similar patterns.
The maximum neck distance from the camera that could
be detected was 640 pixels (half of 1280 pixels) because
the resolution of our cameras was 720p. Figure 7 shows
that learners who received high satisfaction scores (green)
sit closer toward the camera (they had closer distances to
their partners) over the collaborative coding sessions, com-
pared to learners who received average (red) and low (blue)
satisfaction scores. Additionally, learners who received high
satisfaction scores (green) had lower neck location variance
over time, compared to learners who received average (red)
and low (blue) satisfaction scores.
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Figure 7: Neck Location (x-axis) in Pixels from OpenPose

The findings from Figure 6 and Figure 7 were aligned with
previous literature that found learners’ perceived social pres-
ence and proximity significantly impacted their satisfaction,
as well as group performance during collaborative learning
[8, 36]. For example, a study conducted by So et al. [46]
revealed that learners’ perceptions of physical proximity and
psychological aspects of distance were both important fac-
tors in their reported satisfaction with their partner. In
another similar study conducted by Spikol et al. [47], the



authors found that the distances between learners’ faces and
between learners’ hands were two strong indicators of task
performance when groups of college students were engaged
in open-ended collaborative tasks.

7.2 RQ 2: Does multimodal feature fusion im-
prove peer satisfaction prediction compared
to the best-performing unimodal model?

In this study, experiment results in Table 3 from several mul-
timodal models indicated that although using multimodal
features (Head Position (x-axis) combined with Body Key
Points) yielded lower MAE than the best-performing uni-
modal feature, there was no significant performance advan-
tage of using multimodal over unimodal features. The po-
tential reason may be that both head position and body
key points represented learners’ spatial locations; therefore,
combining these two unimodal features did not add extra
useful information to predict peer satisfaction. Therefore,
each of these two unimodal features alone could be used to
predict peer satisfaction. However, the head pose feature ex-
traction process with OpenFace was faster than OpenPose.
OpenPose was computationally demanding, and required
GPU acceleration to perform the body key points detec-
tion. Therefore, OpenFace may be a more practical feature
extraction choice over OpenPose when deploying real-time
learning support systems.

7.3 Implications from comparing different
model architectures

The experimental results comparing performance of differ-
ent model architectures showed that the three different se-
quential models (RNN, LSTM, and GRU) had similar peer
satisfaction prediction accuracy; in addition, non-linear re-
gression models yielded lower MAE than linear regression
models. These results have a few practical implications for
researchers in the educational data mining community seek-
ing to conduct similar studies with the methodology pre-
sented in this study.

Although sequential models were able to represent the se-
quential nature of utterance-level features, the comparison
between different sequential models (RNN, LSTM, and GRU)
did not reflect significant performance differences. Given
that GRU usually has a faster training speed than LSTM
and RNN due to its simpler cell structure [51], GRU could
be a better choice over RNN or LSTM for similar tasks. In
addition, the comparison between different activation func-
tions (linear and sigmoid) showed that the sigmoid regres-
sion model yielded lower MAE and provided more numerical
stability during testing than the linear model. The reason
may be that the satisfaction scores predicted in this study
only ranged from 1 to 5, so the constrained output value
range of the sigmoid function could better avoid large er-
ror values during training. On the contrary, there was no
mechanism to prevent the linear activation function from
predicting out-of-range satisfaction scores.

7.4 Limitations
The current work has several important limitations. First,
we only studied peer satisfaction in the context of co-located
pair programming, and analyzed recordings collected from

a relatively small corpus with 44 middle school learners;
therefore, the predictive features found in this paper may
not generalize well to group collaboration involving three
or more team members, or to learners in other populations
or learning environments, such as adults or online learning.
Second, the LSTM-based feature learning process was black-
box, which makes it relatively difficult to interpret what
predictive information was learned from each unimodal fea-
ture. Third, because the satisfaction survey was adminis-
tered post-hoc, after the collaboration was finished, it does
not capture potential variation that may have occurred in
students’ attitudes toward their partners as collaboration
unfolded. Finally, the effectiveness of video-derived features
identified in this study relies heavily on the correct setup of
the video recording process. Our dataset was collected from
a natural and active classroom setting, and thus, OpenFace
sometimes failed to detect both learners’ faces when they
were not directly facing the camera, or in the case of oc-
clusion. Even though we used wide-angle camera lenses for
video recording student interactions, there were some cases
in which some students were sometimes out of the recording
range.

8. CONCLUSION AND FUTURE WORK
Learners’ satisfaction toward their partners plays a crucial
role in group performance and learning outcomes. If intel-
ligent systems could automatically predict peer satisfaction
during collaboration, they could provide timely scaffolding
for better learning experiences. In this paper, we investi-
gated automatic prediction of peer satisfaction by analyzing
44 middle school learners’ collaborative dialogues. We com-
pared a set of state-of-the-art multimodal learning analyt-
ics techniques with linguistic, acoustic-prosodic, and visual
features extracted from students’ interactions. The experi-
mental results revealed two significant predictors: head po-
sition and body location. Learners who had shorter head
and body distances from their partners were more likely to
receive higher peer satisfaction scores.

This study highlights several directions for future work. First,
future work should examine the generalizability of the find-
ings in this study using larger datasets, including data from
online learning environments and multi-party interactions
among groups of three or more learners. Second, although
OpenFace and OpenPose support accurate detection of head
pose and body pose, it remains challenging to integrate them
into intelligent learning support systems for real-time anal-
ysis. Future work should investigate other methods and
tools to detect learners’ pose features accurately and time-
efficiently. Finally, it is important to investigate how intelli-
gent systems can most effectively deliver feedback to learners
during collaborative learning process. As we move toward
predicting peer satisfaction in real time, we will be able to
build and investigate systems that can significantly improve
learners’ collaborative learning experience in classrooms.
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