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Abstract. Adaptive and intelligent collaborative learning support sys-
tems are effective for supporting learning and building strong collabora-
tive skills. This potential has not yet been realized within noisy classroom
environments, where automated speech recognition (ASR) is very diffi-
cult. A key challenge is to differentiate each learner’s speech from the
background noise, which includes the teachers’ speech as well as other
groups’ speech. In this paper, we explore a multimodal method to identify
speakers by using visual and acoustic features from ten video recordings
of children pairs collaborating in an elementary school classroom. The
results indicate that the visual modality was better for identifying the
speaker when in-group speech was detected, while the acoustic modality
was better for differentiating in-group speech from background speech.
Our analysis also revealed that recurrent neural network (RNN)-based
models outperformed convolutional neural network (CNN)-based models
with higher speaker detection F-1 scores. This work represents a critical
step toward the classroom deployment of intelligent systems that support
collaborative learning.
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1 Introduction

Adaptive and intelligent collaborative learning support (AICLS) systems [25]
provide personalized feedback [45] to individual students working in pairs or
groups. An AICLS system not only analyzes the group interaction [27] and pro-
vides tailored supports during the problem-solving process [36], but also adapts
its content presentation or navigation support according to the learners’ collab-
oration activity. This technology has been shown to be effective for improving
students’ learning outcomes [1], increasing their engagement in learning [46] and
helping students build strong collaboration skills [26]. Early results have shown
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that adaptive supports are better than non-adaptive supports for providing flex-
ible guidance [17] and improving learning outcomes [21].

Despite this promise, AICLS cannot currently support real-time collaboration
between children speaking together in noisy classrooms. Instead, most current
AICLS systems are designed for remote/distributed collaboration settings where
an individual’s speech and actions can easily be isolated [31,41] and where stu-
dents’ individual learning activities are often identified through analyzing stu-
dents’ log actions [37] or the group discourse through textual chat [41,44,45].
This is in part because classrooms are noisy: they feature multiple overlap-
ping audio sources, and deploying ASR in these environments is difficult due
to the challenges of handling background noise and detecting/isolating speech
and speakers [3]. This problem could be mitigated with students wearing their
own microphone with noise cancelling capabilities; however, most schools are
unable to afford deploying these devices en masse. In addition, headsets detract
from the fluid interplay of individual, small group, and whole class discourse.

To address these challenges and move toward AICLS systems that are viable
for use in noisy classrooms, one task that must be addressed is detecting which
child from a collaborating pair is speaking at a given moment. This paper reports
on a novel speaker detection method that uses visual and acoustic features from
video recordings of learners collaborating, with the goal of identifying which child
is speaking. The proposed approach analyzes a single mixed audio source from
two students in the group, which does not require their audios to be recorded
into separate channels. In addition, the approach utilizes visual features detected
from two children’s faces, which could act as supplementary indicators to acoustic
features. To the best of our knowledge, this paper presents the first empirical
evaluation combining visual and acoustic features on the challenging task of
identifying the speaker within student pairs in noisy classroom contexts.

2 Related Work

Recently, AICLS systems have been deployed for various learning domains, such
as computer science learning [47], medical training [9], and music learning [24]. In
this section we focus on AICLS systems within the context of computer science
education. Current systems have used a variety of methods to identify each
student’s activity during collaboration. SIENA [29] tracked individual’s learning
progress by calculating the learner’s posterior knowledge after he/she answered a
question. NUCLEO [37] built an adaptation model for each learner based on the
individual score obtained among team partners and the system-user interaction
process, such as number of files created and answered messages. SCEPPSys
[41] and Peer Tutor [45] analyzed group discourse from students’ textual chat
history. CycleTalk Chat [21] identified individuals by assigning each student an
audio-based chat client and collecting their dialogues separately.

The aforementioned systems were all designed for remote/distributed collab-
oration where students were not co-located. There have been very few systems
that analyze student dialogues while they are working collaboratively in person.
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Harsley et al. [12] designed Collab-ChiQat for analyzing student activity during
collaboration; yet, the system required students to self-report who authored each
line of code. Yett et al. [47] analyzed individual log actions of co-located stu-
dents participating in a collaborative programming environment. The authors
suggested that future work should combine log-based analysis and discourse anal-
ysis, which relies on the accurate differentiation of speech between individuals
within the group. In another classroom study, Celepkolu et al. [5] designed a
visualization tool to help individual students reflect on their collaborative dia-
logues. Even though the tool automatically analyzed the dialogue and generated
the visualizations based on the transcriptions, it still required the dialogue to
be manually transcribed. Blanchard et al. [3] tested and compared five ASR
engines such as Google Speech and Bing Speech with audio data collected in
middle school classrooms, but their focus was on teachers who wore individual
wireless microphones. Li et al. [22] designed a Siamese neural network to detect
dialogues for teachers and students in both online and offline classroom audio
recordings. Although a promising level of speaker detection was achieved, the
authors suggested that future work should combine both audio and video data.

Our study differs from these studies in three ways: First, our dataset con-
sisted of pairs of students sitting next to each other, sharing the computer, with
background noise from other students and the teacher. Such a research context
makes distinguishing the speakers much more challenging. Second, we identify
speakers by using video recordings (audio and video images) of the students’
collaborative interaction process collected from the built-in computer webcam
(without any headsets). Third, we applied recent machine learning techniques
and compared the performance between CNN-based models and RNN-based
models. Prior work by Hu et al. [15] has shown promise using CNN-based mod-
els to localize and identify each speaking character in a TV/movie/live show
video, but did not consider the natural temporal connections within the sequen-
tial data. In contrast, RNN-based models represent a novel approach to solving
this problem and have been used by Soleymani et al. [39] to analyze a speaker’s
verbal and nonverbal behaviors associated with self-disclosure with multimodal
features extracted from video, audio and text data.

3 Data

3.1 Collection and Preprocessing

Our dataset was collected from 20 children (10 pairs) in 4th/5th grade classrooms
in an elementary school in the southeastern United States in 2019. Among the
children, 9 identified themselves as females and 11 as males. The students col-
laborated on a series of coding activities, in which they learned fundamental CS
concepts such as variables, conditionals, and loops using Netsblox [30], a block-
based learning environment. Each group’s collaboration process was videotaped
by the front-facing camera of their computer; meanwhile, the audio was recorded
by the computer microphone without any additive noise cancellation equipment.
The corpus contained a total of 7 hours and 22 minutes of video recordings; raw



4 Y. Ma et al.

audio recordings were then extracted from video recordings using FFmpeg [10],
an open-source video converter.

Since noise sensitivity is a significant challenge for speech-related tasks, we
approximated the quality of our audio recordings by following the method used
by Tan et al. [40] to compute the posterior signal-to-noise ratio (SNR), the
logarithmic ratio of the energy of the noisy speech to the energy of the noise.
The average estimated SNR over ten recordings was +2.20 dB (as shown in
Table 1), indicating a fair audio quality. Howard et al. [14] reported that the
typical classroom SNRs range from −7 dB to +5 dB, while an SNR of +15 dB
or above indicates good speech quality.

3.2 Annotation

We used ELAN [7] to synchronize video and audio clips and annotate them.
The data was tagged at a one-second granularity, a time window previously
used in similar acoustic classification tasks [42]. We tagged each one-second clip
in one of three ways: Left Child (the child sitting in the left of the video was
speaking), Right Child (the child sitting on the right was speaking), and Silence
(neither Left Child nor Right Child was speaking). No children switched position
during the activity. When the clip contained overlapping speech, we tagged the
clip based on which child’s speech was more audible. Table 1 shows the details
of the corpus. The first author annotated the first four of ten videos, and the
remaining six videos were annotated by three other annotators. To measure the
labeling reliability, the first author then independently tagged 10% continuous
video excerpts from the data tagged by other annotators. The Cohen’s kappa
scores between the first author and each of our three annotators were 0.8521,
0.7109, 0.7526 respectively, indicating substantial inner-annotator agreement [4].

Table 1: Details of the collected classroom recording corpus
Video ID Duration(second) Left Child(second) Right Child(second) Silence(second)1SNR(dB)

1 2574 569 386 1619 +2.60
2 2199 394 498 1307 +1.24
3 2550 397 605 1548 +1.57
4 2693 416 485 1792 +3.17
5 3019 617 314 2088 +3.35
6 2665 165 302 2198 +2.67
7 2940 311 426 2203 +2.48
8 2804 526 275 2003 +2.12
9 2350 344 509 1497 +1.40
10 2673 377 604 1692 +1.39

In total 26467 4116 (15.55%) 4404 (16.64%) 17947 (67.81%) +2.20
1 Silence class also includes the clips in which the in-group children were silent but background speech

was detected from the teacher and other children in the classroom. Background speech was irrelevant to
in-group interaction and should not be taken into consideration for further in-group interaction analysis
by the AICLS system
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4 Features

4.1 Visual Feature: Dense Optical Flow

Facial movements, especially around the lip area, are critical to detect speakers
[8,35]. In this paper, we extracted visual features using the dense optical flow
[38] from children’s faces in each pair (see Fig 1). Dense optical flow uses the
variation of pixels to calculate the object motion gradient along time. To compute
the dense optical flows for two children in the video, we first extracted their
faces using the deep learning-based face detector [33] from OpenCV [32] (a real-
time computer vision library). Then, we re-scaled all faces into the same image
size and used the cv2.calcOpticalFlowFarneback() [34] function from OpenCV
to calculated one dense optical flow on their faces for each second. We applied
dense optical flow on the whole face instead of the mouth region because whole-
face optical flows were more robust to instances in which the child was not
directly facing the camera, or in the case of low-resolution recording. Dense
optical flow images were generated in grey-scale because the color in dense optical
flow denotes the movement direction, which was not needed to identify speakers.

f t

f t - δ
 Dense Optical Flow

O t - δ, t
 

Fig. 1: Left: two sample frames (ft−δ and ft) from a one-second video clip when the left child was
not speaking and the right child was speaking. Right: dense optical flow Ot−δ,t, which represents
the motion detected between the two frames. In this case, more motion was detected from the right
child’s face: the intensity in the dense optical flow denotes movement speed.

4.2 Acoustic Feature: Mel Spectrogram

We converted each one-second audio clip into one mel spectrogram, an image rep-
resentation that describes an audio’s time-frequency distribution where the fre-
quencies are converted in the mel scale—a perceptual scale of pitches judged by
human listeners. One advantage of the mel spectrogram over traditional acous-
tic features [19] (pitch, energy, mfcc coefficients, etc.) is it shows the variance of
acoustic frequency and energy over time, which is useful for analyzing sequential
data. In an mel spectrogram, the x-axis represents time and the y-axis represents
frequency. We generated mel spectrograms using librosa [28], a python library for
audio analysis. Figure 2 shows four mel spectrograms generated from 4 different
audio clips.
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(a) (b) (c) (d)

Fig. 2: Four mel spectrograms: (a): The target child spoke over the whole audio clip; (b): The speech
from the target child only presented in the first 0.6 second of the audio clip; (c): Silence, the target
children were silent but background speech from the teacher or other children was audible; (d):
Silence, none speech detected over the whole audio clip

5 Methods: Speaker Detection

In this study, we conducted two experiments. First, to analyze the performance
of different feature combinations, we compared the results of uni-modality (only
visual or only acoustic features) with multi-modality (visual and acoustic fea-
tures). Second, to compare the performance of different model architectures, we
tested our dataset with two types of commonly used models (CNN-based and
RNN-based).
Experiment 1: Comparing Uni-modality with Multi-modality. Figure
3 shows the high-level structure of the multimodal learning model, which was
divided into three parallel streams (one visual stream for the left child, one vi-
sual stream for the right child, and one acoustic stream for both children). The
model consisted of two parts: a modality encoding network and a sequence-based
recurrent network. Since the visual and acoustic feature representations are both
images, we used CNN-based models in the modality encoding network. We used
ResNet-50 [13], a pre-trained CNN-based model that achieved the highest im-
age classification accuracy on ImageNet [16], to map each image representation
into a feature embedding. In the second sequence-based recurrent network, we
used Bi-directional Long Short-Term Memory (Bi-LSTM) to learn temporal de-
pendencies between sequential feature representations. We tested different time
steps of the Bi-LSTM from 2 to 5. Each output of the Bi-LSTM is a feature
embedding followed by a softmax layer [23] to calculate the class scores. Finally,
we combined the class scores from three separate streams by averaging fusion
[38]. The model (Code available on GitHub 1) was implemented in Python with
the Keras [18] API. Two visual streams were used for evaluating the perfor-
mance of the visual modality, and one acoustic stream was used for evaluating
the performance of the acoustic modality.
Experiment 2: Comparing CNN-based models with RNN-based mod-
els. We selected two types of commonly used models (CNN-based and RNN-
based) that were proposed in the recent literature. Hu et al. [15] proposed a
two-stream CNN-based learning framework for localizing and identifying each
speaking character in a TV/movie/live show video. The model used convolu-
tional layers as face feature extractors, then learned a unified multimodal classi-

1 https://github.com/yingbo-ma/The-Challenge-of-Noisy-Classrooms-AIED2021

https://github.com/yingbo-ma/The-Challenge-of-Noisy-Classrooms-AIED2021
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Fig. 3: Multimodal learning model

fier with fusion features combined from visual and acoustic features. Soleymani
et al. [39] proposed a ResNet + GRU (gated recurrent unit)-based method to an-
alyze a speaker’s verbal and nonverbal behaviors associated with self-disclosure.
The model built three separate classifiers based on the visual features extracted
with ResNet, the acoustic features extracted with VGGish [43] (a pre-trained
acoustic feature extractor trained on audio spectrograms), and the language fea-
tures extracted with BERT [6] (a pre-trained language model that can map the
spoken utterances to feature representations). The model then performed late fu-
sion by simply averaging the output from all modalities. Since the feature fusion
strategy was not the focus of this work, we implemented the above-mentioned
models followed by the description of the model architecture in the two papers,
and still used late averaging fusion. The CNN model [15] consisted of three
stacked convolution + pooling layers followed by a fully connected layer. The
RNN model [39] consisted of the pre-trained ResNet-50 [13] followed by a single
GRU layer with 128 hidden units.

During the model training process across the two experiments, we conducted
experiments on each video recording and used ten-fold cross-validation to train
and evaluate the model. The network updated weights with an Adam optimizer
[20] with the learning rate of 0.0001. We evaluated the trained model with the
F-1 score [11] combined from precison and recall for each one of the three classes.
Although F-1 score can be used as a general measurement of model performance,
including precision and recall provides additional information. The context of
collaborative dialogue may shift the cost of false negatives versus false positives,
so these additional scores allows us to weigh each case.
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6 Results

Results for Experiment 1 Figure 4 shows the performance of uni-modality
and multi-modality. In Figure 4-Left, the acoustic modality outperformed the
visual modality and the combined modality when identifying the Silent class.
In Figure 4-Middle and Figure 4-Right, the visual modality outperformed the
acoustic modality and the combined modality when identifying one of the speech
classes. Table 2 compares the different modalities with averaged precision, recall
and F-1 score for each class. Table 3 displays results for the multimodal learning
model’s performance with different time steps. The time step of 3 performed the
best for classifying the Silence class and the time step of 3 and 4 both performed
similarly well at classifying the Left and Right Child class.
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Fig. 4: F-1 score for three classes across corpus using different modalities. Left: Silence class—acoustic
modality outperformed visual modality; Middle: Left Child class—visual modality outperformed
acoustic modality; Right: Right Child class—visual modality outperformed acoustic modality

Table 2: Performance for each class under different modalities

Silence Left Child Right Child
Precision Recall F-1 Score Precision Recall F-1 Score Precision Recall F-1 Score

Visual Modality 0.55 0.49 0.52 0.59 0.69 0.64 0.59 0.68 0.63

Acoustic Modality 0.68 0.89 0.78 0.68 0.50 0.56 0.68 0.49 0.55

Combined Modality 0.73 0.79 0.76 0.66 0.61 0.63 0.66 0.60 0.62

Table 3: Performance of the multimodal learning model with different time steps in Bi-LSTM
Time Step 2 3 4 5

Precision Recall F-1 Score Precision Recall F-1 Score Precision Recall F-1 Score Precision Recall F-1 Score

Silence 0.72 0.84 0.76 0.72 0.84 0.77 0.72 0.84 0.77 0.71 0.83 0.76

Left Child 0.63 0.58 0.60 0.66 0.60 0.63 0.66 0.59 0.62 0.64 0.58 0.61

Right Child 0.64 0.59 0.61 0.66 0.60 0.62 0.67 0.60 0.63 0.67 0.60 0.63

Results for Experiment 2 Table 4 shows the performance of different mod-
els on our corpus. The CNN architecture [15] performed the best at classify-
ing Silence; Both the ResNet + GRU model [39] and the ResNet + Bi-LSTM
model in our paper performed similarly, with better classification performance
on Left Child and Right Child than the CNN architecture. ResNet + Uni-LSTM
performed comparably with ResNet + Bi-LSTM, potentially indicating that
whether a child intends to speak has stronger connection with his/her prior
dialogues than latter dialogues.
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Table 4: Performance of different models
Model Class Precision Recall F-1 Score

Silence 0.70 0.87 0.78
CNN [15] Left Child 0.65 0.53 0.58

Right Child 0.65 0.53 0.58

Silence 0.72 0.81 0.76
ResNet + GRU [39] Left Child 0.67 0.58 0.62

Right Child 0.66 0.58 0.62

Silence 0.72 0.83 0.77
ResNet + Uni-directional LSTM Left Child 0.66 0.60 0.63

Right Child 0.65 0.60 0.62

Silence 0.72 0.84 0.77
ResNet + Bi-directional LSTM Left Child 0.66 0.60 0.63

Right Child 0.66 0.61 0.62

7 Discussion

This work evaluated several unimodal and multimodal learning frameworks’ per-
formance on identifying the speaker within pairs of children in a noisy elementary
school classroom. Our results show the effectiveness of using visual optical flow
and acoustic mel spectrogram for this task, and achieved averaged F-1 scores of
0.76 for Silence, 0.63 for Left Child, and 0.62 for Right Child.

These results have several implications for developing AICLS systems that
can be utilized for personalized supports during collaborative learning in noisy
classrooms. In the experiment investigating the contribution of each modality,
the results showed that only using the visual modality yielded a higher F-1
score on detecting speakers compared to using the combined visual and acous-
tic modality. However, only using the visual modality has potential drawbacks
due to lower Precision and higher Recall, meaning the model falsely reported
more irrelevant background speech samples as in-group speech samples. This
could potentially be misleading for an AICLS system. For example, the system
might provide support when students are listening to teacher’s lecture because
the system would falsely classify the teacher’s dialogues as the students’ dia-
logues. Therefore, the feature modality should be carefully selected based on the
noise level of a classroom. If the classroom is relatively quiet, using the visual
modality may provide better speaker detection performance and report more
true in-group speech samples. However, if a classroom is noisy and the in-group
speech is overwhelmed by the background speech, the results suggest using the
combined visual and acoustic modality may help. The experiment of comparing
CNN-based models and RNN-based models showed that the CNN-based model
performed better in differentiating in-group speech from background noise, and
RNN-based models performed better for distinguishing between in-group speak-
ers. Compared to silence, speech tends to have a more temporal connection,
which was better modeled by the sequential neural network of the RNN. There-
fore, CNN-based models would be better to use when the proportion of speech
is much lower than the proportion of silence in students’ dialogues, and RNN-
based models would be more appropriate to use when in-group children interact
with partners more frequently.
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There are important limitations of the present approach. First, although our
framework achieved promising results, the generalizability of the model has not
been shown. Each learned model depends on the unique audio characteristics of
children in the training set. In addition, the effectiveness of visual features largely
relies on the correct setup of the video data collection process. The speaker de-
tection performance on videos 6 and 8 was much lower than the averaged results
across because in both videos, the front-facing camera was not positioned cor-
rectly. On the other hand, the effectiveness of acoustic feature depends on the
group members’ voices and the audio quality. If the frequency range of two chil-
dren’s voices is narrow (this often happens when two children in the group are of
the same gender), the performance of using acoustic features would deteriorate.

8 Conclusions and Future Work

AI to support collaborative learning in classrooms holds great promise, but the
tasks of identifying who is speaking, and what they are saying, present great
challenges. This paper investigated the task of speaker detection. By utilizing
features from the visual modality and the acoustic modality, our RNN-based
model achieved encouraging speaker detection performance. The results indi-
cated that the acoustic modality performed better at differentiating in-group
speech and background noise; and the visual modality performed better in iden-
tifying in-group speakers. We also compared the performance of different models
on this task and found that RNN-based models outperformed CNN-based models
in modeling the temporal connection within the speech.

These results highlight several directions for future work. First, while the
features used in this paper were promising, other features should be investigated
(e.g., lip motion tracking, linguistic features). In addition, performance of cloud-
based ASR services needs to be tested as well as the use of other popular face
detection toolkits (e.g., Openface 2.0 [2]), and the results of learning models
with different fusion strategies (feature versus class score fusion) needs further
analysis. The work reported in this paper was a first step toward building an
intelligent collaboration support system that can detect interactions between a
pair of children and provide adaptive supports during learning within the noisy
classroom environment. As we move toward this goal, we will be able to build
and investigate systems that can significantly improve children’s collaborative
learning experience in classrooms.
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