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Abstract. Identifying effective tutorial dialogue strategies is a key issue for intelligent tutoring systems research.
Human-human tutoring offers a valuable model for identifying effective tutorial strategies, but extracting them is
a challenge because of the richness of human dialogue. This article addresses that challenge through a machine
learning approach that 1) learns tutorial modes from a corpus of human tutoring, and 2) identifies the statistical
relationships between student outcomes and the learned modes. The modeling approach utilizes hidden Markov
models (HMMs) to capture the unobservable stochastic structure that is thought to influence the observations, in this
case dialogue acts and task actions, that are generated by task-oriented tutorial dialogue. We refer to this unobservable
layer as the hidden dialogue state, and interpret it as representing the tutor and students’ collaborative intentions.
We have applied HMMs to a corpus of annotated task-oriented tutorial dialogue to learn one model for each of two
effective human tutors. Significant correlations emerged between the automatically extracted tutoring modes and
student learning outcomes. Broadly, the results suggest that HMMs can learn meaningful hidden tutorial dialogue
structure. More specifically, the findings point to specific mechanisms within task-oriented tutorial dialogue that
are associated with increased student learning. This work has direct applications in authoring data-driven tutorial
dialogue system behavior and in investigating the effectiveness of human tutoring.
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INTRODUCTION

A key issue in intelligent tutoring systems research is identifying effective tutoring strategies to support
student learning. It has been long recognized that human tutoring offers a valuable model of effective
tutorial strategies. A rich history of tutorial dialogue research has identified some components of these
strategies including adaptive cognitive scaffolding, motivational support, and collaborative dialogue pat-
terns that support learning through tutoring (M.T.H. Chi, Siler, Jeong, Yamauchi, & Hausmann, 2001;
Fox, 1993; Graesser, Person, & Magliano, 2004; Lepper, Woolverton, Mumme, & Gurtner, 1993). As the
field has grown in its understanding of fundamentally effective tutoring phenomena, it has also become
clear that the complexities of choosing the most effective contextualized tutoring strategies are not well
understood. An important research direction is to use dialogue corpora, collected from human-human or
human-computer tutorial dialogue, to create models that can assess the differential effectiveness of tutor-
ing strategies at a fine-grained level (M. Chi, Jordan, VanLehn, & Litman, 2009; Ohlsson et al., 2007).
This research direction is particularly timely given the increasing attention that is being given to machine
learning techniques to address tasks such as automatically authoring intelligent tutoring system behavior
(Barnes & Stamper, 2010) along with creating data-driven natural language dialogue management sys-
tems for tutoring (e.g., Tetreault & Litman, 2008) and other dialogue application areas (Bangalore, Di
Fabbrizio, & Stent, 2008). Because machine-learned models constitute stochastic representations of tutor-
ing expertise, they can be used not only in a generative context to author tutoring system behavior, but
also as descriptive models whose associations with student outcomes give insight into the effectiveness of
tutoring.

There is growing evidence that meaningful tutorial dialogue patterns can be automatically extracted from
corpora of human tutoring using machine learning techniques (e.g., M. Chi, VanLehn, & Litman, 2011;
Forbes-Riley & Litman, 2009; Fossati, Di Eugenio, Ohlsson, Brown, & Chen, 2010; Kersey, Di Eugenio,
Jordan, & Katz, 2009; Ohlsson et al., 2007; Tetreault & Litman, 2008). The meaningfulness of these models
can be assessed in several different ways, including whether their components are correlated with student
outcomes in an existing data set, or whether implementing them can improve the effectiveness of a tutoring
system. Following the first approach, the work reported in this article explores whether models of hidden
dialogue state, learned in an unsupervised fashion, are correlated with student learning.

An underlying premise of this work is that natural language dialogue is influenced by a layer of unobserv-
able stochastic structure. This structure is likely comprised of cognitive, affective, and social influences.
Hidden Markov models (HMMs) provide a framework for explicitly modeling unobservable structure
within a layer of hidden states (Rabiner, 1989). In the current work, HMMs are learned from a corpus
of annotated task-oriented tutorial dialogue, and then the layer of hidden states is interpreted as hidden
dialogue state, corresponding to tutoring modes (Cade, Copeland, Person, & D’Mello, 2008). This inter-
pretation is supported by previous work in which automatically extracted hidden dialogue state was found
to resemble tutoring modes from the literature (Boyer, Ha et al., 2009). The current work takes a step
beyond the previous work by identifying relationships between student learning and hidden dialogue state.
This modeling framework for extracting tutoring modes and analyzing their differential effectiveness has
direct applications in authoring data-driven tutorial dialogue system behavior and in research regarding the
effectiveness of human tutors.

This article is organized as follows. First, we present related work regarding modeling the differential
effectiveness of tutoring approaches. Second, we describe the human-human task-oriented tutoring study
that was conducted, and the structure of the resulting corpus from which the HMMs were learned. Third, we
describe the corpus annotation, both for dialogue acts and for problem-solving events. Fourth, we present
an introduction to HMMs and describe the methodology by which they were applied to this corpus. Next,
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the best-fit models, and their correlations with student learning, are presented and discussed. Finally, we
present conclusions and discuss directions for future work.

RELATED WORK

Identifying effective tutoring strategies has long been a research focus of the intelligent tutoring systems
community. Empirical studies of human and computer tutoring have revealed characteristics of novice
and expert tutors, such as experts’ tendency to ask more questions than novice tutors (Evens & Michael,
2006). It has also been found that even in expert tutoring, “sophisticated” strategies may not be employed,
yet expert tutoring is highly effective (Cade et al., 2008). Gaining insight into the sources of tutoring
effectiveness is an important research direction. Phenomena such as collaborative dialogue patterns in
tutoring (Graesser, Person, & Magliano, 1995), Socratic and didactic strategies (Rosé, Moore, VanLehn,
& Allbritton, 2000), and interrelationships between affect, motivation, and learning (D’Mello, Taylor, &
Graesser, 2007; Lepper et al., 1993) have been investigated. However, as a rich form of communication,
tutorial dialogue is not fully understood: recent work suggests that the interactivity facilitated by human
tutoring is key to its effectiveness (M. Chi et al., 2009), and other research indicates that students can learn
effectively by watching playbacks of past tutoring sessions (M. T. H. Chi, Roy, & Hausmann, 2008). Such
findings contribute to our understanding of tutoring phenomena, but also raise questions about the relative
effectiveness of different tutoring approaches.

To shed further light on this issue, an important line of research involves modeling the specific relation-
ships between different types of tutoring interactions and learning (Ohlsson et al., 2007). Some studies
have investigated how shallow measures, such as average student turn length, correlate with learning in
typed dialogue (Core, Moore, & Zinn, 2003; Katz, Allbritton, & Connelly, 2003; Rosé, Bhembe, Siler,
Srivastava, & VanLehn, 2003). Analysis at the dialogue act and bigram levels has uncovered significant
relationships with learning in spoken dialogue (Litman & Forbes-Riley, 2006). Recently, we have seen a
growing emphasis on applying automatic techniques to investigate learning correlations across domains
and modalities (Litman, Moore, Dzikovska, & Farrow, 2009), for devising optimal local strategies (M. Chi,
Jordan, VanLehn, & Hall, 2008; Tetreault & Litman, 2008), and for assessing the impact of micro-level
tutorial tactics (M. Chi et al., 2010).

These lines of research do not simply acquire machine-learned models of tutoring; they assess whether
the extracted structure is meaningful. The notion of whether a model is meaningful can be explored in many
different ways. One approach is to use the model to refine the behavior of a tutoring system and determine
whether its effectiveness is improved. For example, bigram analysis of dialogue turns in qualitative physics
tutoring has revealed that human tutors adapt to student uncertainty (Litman & Forbes-Riley, 2006). This
analysis demonstrated the statistical dependence of tutor responses on student uncertainty, and as such
created a model of one aspect of tutor adaptation. However, the importance of that finding was reinforced
by the fact that, when a tutorial dialogue system was engineered to adapt in a similar way, it became more
effective (Forbes-Riley & Litman, 2009).

Another way to determine whether a model is capturing a meaningful aspect of tutoring is to explore
whether, when treated as a descriptive model, the model’s structure is correlated with outcomes. This
approach is embodied in work that builds multiple regression models on annotated corpora by treating
dialogue act frequencies as predictors and student learning as the predicted value (Ohlsson et al., 2007).
This multiple regression approach is also widely used in natural language dialogue systems research outside
of tutoring (Walker, Litman, Kamm, & Abella, 1997) and has been applied to explore user satisfaction and
learning within tutoring systems (Forbes-Riley & Litman, 2006). A regression model is just one example
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of a model that describes relationships within a data set. The HMMs used in this work are another example,
and unlike linear regression or bigram models, HMMs capture doubly stochastic structure that explicitly
accounts for hidden dialogue state. HMMs have been applied successfully to such tasks as modeling
student activity patterns (Beal, Mitra, & Cohen, 2007; Jeong et al., 2008), characterizing the success of
collaborative peer dialogues (Soller & Stevens, 2007), and learning human-interpretable models of tutoring
modes (Boyer, Ha et al., 2009).

The evaluation reported here demonstrates that when hidden dialogue state is learned in an unsupervised
fashion (that is, without any prior labeling of hidden dialogue state) with HMMs, the hidden structure
is correlated with student learning. This finding, coupled with the finding that the constituent observed
components of the hidden dialogue states were not themselves correlated with student learning, indicates
that HMMs can capture a meaningful aspect of tutorial dialogue structure automatically, a finding that has
theoretical and applied implications for tutorial dialogue research.

TUTORING STUDY

The corpus that serves as the basis for this work was collected during a human-human tutoring study. The
goal of this study was to produce a sizeable corpus of effective tutoring from which data-driven models
of task-oriented tutorial dialogue could be learned. In keeping with this goal, the study featured two paid
tutors who had achieved the highest average student learning gains in two prior studies (Boyer, Vouk, &
Lester, 2007; Boyer, Phillips, Wallis, Vouk, & Lester, 2008). Tutor A was a male computer science student
in his final semester of undergraduate studies. Tutor B was a female third-year computer science graduate
student. An initial analysis of the corpus suggested that the tutors took different approaches; for example,
Tutor A was less proactive than Tutor B (Boyer, Phillips, Wallis, Vouk, & Lester, 2009). As we describe
below, the two tutors achieved similar learning gains.

Students were drawn from four separate sections, or modules, of the same university computer science
course titled “Introduction to Programming – Java”. They participated on a voluntary basis in exchange for
a small amount of course credit. The learning task that served as the focus of the tutoring sessions followed
directly from students’ in-class lectures the preceding week. A total of 61 students completed tutoring
sessions, constituting a participation rate of 64%. Ten of these sessions were omitted due to inconsistencies
(e.g., network problems, students performing task actions outside the workspace sharing software). The
first three sessions were also omitted because they featured a pilot version of the task that was modified for
subsequent sessions. The remaining 48 sessions were utilized in the modeling and analysis presented here.

In order to ensure that all interactions between tutor and student were captured, participants reported to
separate rooms at a scheduled time. Students were shown an instructional video that featured an orientation
to the software and a brief introduction to the learning task. This video was also shown to the tutors at the
start of the study. After each student completed the instructional video, the tutoring session commenced.
The students and tutors interacted with one another using software with a textual dialogue interface and a
shared task workspace that provided tutors with read-only access (Fig. 1). Students completed a learning task
comprised of a programming exercise that involved applying concepts from recent class lectures including
for loops, arrays, and parameter passing. The tutoring sessions ended when the student had completed the
three-part programming task or one hour had elapsed.

Students completed an identical, paper-based pretest and posttest designed to gauge learning over the
course of the tutoring session. These free-response instruments were written by the research team and
revised according to feedback from an independent panel of three computer science educators, with between
three and twenty years of classroom experience. This panel assessed the difficulty of each question and
the degree to which it addressed the targeted learning concepts. The posttest was administered immedi-
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Fig. 1. Screenshot of human tutoring interface.

ately after the tutoring session. According to a paired sample t-test, the tutoring sessions resulted in a
statistically significant average learning gain as measured by posttest minus pretest scores (mean = 7%;
variance = 0.01; p < 0.0001). There was no statistically reliable difference between the mean learning gains
by tutor (meanA = 6.9%, meanB = 8.6%; p = 0.569). Analysis of the pretest scores suggests that the two
groups of students were similarly prepared for the task: Tutor A’s students averaged 79.5% on the pretest,
and Tutor B’s students averaged 78.9% (t-test p = 0.764).

CORPUS ANNOTATION

The raw corpus contains 102,315 events. Of these, 4,806 are dialogue messages. The 1,468 student utter-
ances and 3,338 tutor utterances were all subsequently annotated with dialogue act tags. The remaining
events in the raw corpus consist of student problem-solving traces that include typing, opening and closing
files, and executing the student’s program. The entries in this problem-solving data stream were manually
aggregated into significant student work events, resulting in 3,793 tagged task actions.

Dialogue act annotation

One human tagger applied the dialogue act annotation scheme (Table 1) to the entire corpus.1 Each textual
dialogue message was treated as a single utterance, except where separate text spans were identified within
a message that corresponded to separate dialogue acts. The primary tagger identified such spans as separate
utterances, each of which corresponds to precisely one dialogue act tag. This manual segmentation was

1 The dialogue act annotators were the second and third authors of this paper.
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Table 1
Dialogue act annotation scheme

Dialogue act Description Tutor example Student example

Statement Task or conceptual assertion. Arrays in java are
indexed starting at 0.

I’m going to do this
method first.

Question Task or conceptual question. Which one do you want
to start with?

What index do arrays in
java start with?

Assessing Question Request for feedback on task or
conceptual utterance.

Do you know how to
declare an array?

Does my loop look
right?

Positive Feedback Positive assessment of task
action or conceptual utterance.

Right. Yes.

Positive Content
Feedback

Positive assessment with
explanation.

Yep, your array is the
right size.

Yes, I know how to
declare an array.

Negative Feedback Negative assessment of task
action or conceptual utterance.

No. No.

Negative Content
Feedback

Negative assessment with
explanation.

No, that variable needs
to be an integer.

No, I’ve learned about
objects but not arrays.

Lukewarm Feedback Lukewarm assessment of task
action or conceptual utterance.

Almost. Sort of.

Lukewarm Content
Feedback

Lukewarm assessment with
explanation.

It’s almost right, but
your loop will go out
of bounds.

I’m not sure how to
declare an array.

Extra-Domain Asides not relevant to the
tutoring task.

Somebody will be there
soon.

Can I take off these
headphones?

Grounding Acknowledgement/thanks. Ok. Thanks.

provided to the second tagger, who independently annotated a randomly selected subset containing 10%
of all the utterances.2 The resulting Kappa was 0.80, indicating substantial agreement.3

Task annotation

Student task actions were recorded at a low level (i.e., individual keystrokes). A human judge aggregated
these events into problem-solving chunks that occurred between each pair of dialogue utterances and
annotated the student work for subtasks and correctness. The task annotation protocol was hierarchically
structured and, at its leaves, included more than fifty low-level subtasks (Fig. 2). After tagging each subtask,
the judge tagged the chunk for correctness. The correctness categories were Correct (fully conforming to
the requirements of the learning task), Buggy (violating the requirements of the learning task), Incomplete
(on track but not yet complete), and Dispreferred (functional but not conforming to the pedagogical goals
of the task).

2 The tutoring sessions that were used for annotation scheme development and refinement were not included in
the Kappa calculation since they were annotated collaboratively by the two taggers, rather than independently.

3 The Kappa statistic is a measure of agreement that adjusts for the agreement that would be expected by chance.
Kappa values range from −1 to 1, with a Kappa of 0 being equal to chance. Throughout this article we employ a
set of widely used agreement categories for interpreting Kappa values: poor (<0), slight (0–0.20), fair (0.21–0.40),
moderate (0.41–0.60), substantial (0.61–0.80), and almost perfect (0.81–1.0) (Landis & Koch, 1977).
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Fig. 2. Portion of task action annotation scheme that was applied to manually segmented student task actions.

One human judge applied this protocol to the entire corpus, with a second judge tagging 20% of the
data that had been selected via random sampling balanced by tutor in order to establish reliability of
the tagging scheme. Because each judge independently played back the events and aggregated them into
problem-solving chunks, the two taggers often identified a different number of events in a given window.
Any unmatched subtask tags, each of which applied to a manually segmented group of student task actions,
were treated as disagreements. The simple Kappa statistic for subtask tagging was 0.58, indicating moderate
agreement. However, because there is a sense of ordering within the subtask tags (i.e., the ‘distance’ between
subtasks 1a and 1b is smaller than the ‘distance’ between subtasks 1a and 3b), it is also meaningful to
consider the weighted Kappa statistic (Cohen, 1968), which was 0.86, indicating almost perfect agreement.
To calculate agreement on the task correctness tag, we considered all task actions for which the two judges
agreed on the subtask tag. The resulting Kappa statistic was 0.80, indicating substantial agreement. At the
current stage of work, only the task correctness tags have been included as input to the HMMs; incorporating
subtask labels is left to future work.

Joining adjacency pairs

The annotation described above produced sequences of dialogue act and task action tags that capture the
events of the tutoring sessions. Although these sequences could be used directly as input for learning
HMMs, prior work has found that identifying dependent pairs of dialogue acts, or adjacency pairs, and
joining them into a single bigram observation during preprocessing resulted in models that were more
interpretable, in part because joining the adjacency pairs prevents the HMM from switching to a new state
between the two dependent dialogue acts (Boyer, Phillips et al., 2009).

This approach first utilizes Chi-square dependency analysis to determine whether the probability of a
particular dialogue act occurring is positively statistically dependent on the occurrence of a preceding
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Fig. 3. Adjacency-pair joining.

dialogue act. If so, this pair of dialogue acts is considered to be an adjacency pair, and co-occurrences of
the two acts are joined in a preprocessing step prior to building the HMMs. In the current work we found
that this preprocessing step produced a better model fit in terms of HMM log likelihood; the resulting
hybrid sequences of unigrams and bigrams were therefore used for training the models reported here. An
example of the result of the adjacency-pair joining algorithm is presented in Fig. 3. The adjacency-pair
joining algorithm was applied to the data prior to disaggregating by tutor.

A partial list of statistically dependent dialogue acts is provided in Table 2. In this table, actt and actt+1

are the dialogue acts or task actions that occur adjacent to each other in the corpus. The p-values indicate
strength of statistical significance based on a 2 × 2 Chi-square test, with the Bonferroni p-value adjusted
for the number of statistical tests that were performed. This adjustment accounts for the probability of
finding a statistically significant result by chance. The frequency indicates how often this adjacency pair
occurred in the corpus, while the expected frequency is how often the pair would be expected to occur if
the two acts in the pair were independent.

HIDDEN MARKOV MODELS

The annotated corpus consists of sequences of dialogue and problem-solving actions, with one sequence
for each tutoring session. Our goal was to extract a model of hidden dialogue state from these sequences
in an unsupervised fashion (i.e., without labeling the hidden dialogue states manually), and to identify
relationships between the tutoring modes and student learning. Findings from earlier work (Boyer, Ha
et al., 2009) suggested that the two tutors employed different strategies than each other; therefore, we
disaggregated the data by tutor and learned two models. This section provides an introduction to the HMM
framework and then describes the modeling approach that was applied.

Modeling framework

In an HMM, the observation symbols are constituents of the input sequences from which the model is
learned. In our application, the observation symbols are annotated dialogue acts, task actions, or joined
pairs of these as described above. Each observation symbol is said to be generated by a hidden state
according to that hidden state’s emission probability distribution, which maps each hidden state onto the
observable symbols. In the current application, hidden states are interpreted as tutoring modes and given
names pursuant to that interpretation, such as “Student Acting on Tutor Help,” which is characterized by a
probability distribution of dialogue acts and task actions that would be observed when the tutorial dialogue
is in that hidden state. The HMM’s transition probability distribution determines transitions between hidden
states, and the initial probability distribution determines the starting state. More details about HMMs and
inference on them can be found in a tutorial by Rabiner (1989).
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Table 2
Subset of statistically dependent adjacency pairs

actt actt+1 p (Bonferroni) p (Chi-square) Freq. Expected freq.

CorrectTask CorrectTask 6.7E-257 2.1E-259 1318 675
ExtraDomain-S ExtraDomain-T 6.2E-249 1.9E-251 44 2
Greeting-S Greeting-T 2.7E-147 8.2E-150 81 8
AssessQuestion-T PosFdbk-S 3.9E-138 1.2E-140 65 6
AssessQuestion-S PosFdbk-T 1.4E-108 4.3E-111 110 18
Question-T Stmt-S 2.6E-108 8.1E-111 37 2
AssessQuestion-T Stmt-S 4.0E-96 1.2E-98 74 10
ExtraDomain-T ExtraDomain-S 2.1E-82 6.6E-85 26 2
Question-S Stmt-T 2.0E-53 6.2E-56 93 24
IncompleteTask IncompleteTask 1.8E-51 5.5E-54 94 23
PosFdbk-S Greeting-T 2.3E-40 7.1E-43 26 3
NegFdbk-S Greeting-T 4.7E-34 1.4E-36 17 2
BuggyTask BuggyTask 7.9E-32 2.4E-34 181 81
ExtraDomain-T ExtraDomain-T 7.2E-29 2.2E-31 18 2
DispreferredTask DispreferredTask 8.7E-27 2.7E-29 9 1
AssessQuestion-S LkwmContent-T 2.5E-26 7.6E-29 24 4
AssessQuestion-T PosContent-S 1.8E-23 5.4E-26 14 1
AssessQuestion-T LkwmFdbk-S 4.9E-21 1.5E-23 12 1
AssessQuestion-S NegContent-T 9.6E-21 3.0E-23 43 11
Stmt-T Greeting-S 6.5E-20 2.0E-22 128 60
AssessQuestion-S PosContent-T 1.4E-18 4.2E-21 20 3
BuggyTask NegContent-T 1.6E-16 5.1E-19 77 31
Stmt-T Stmt-T 4.0E-16 1.2E-18 324 215
AssessQuestion-S LkwmFdbk-T 5.9E-16 1.8E-18 18 3
LkwmFdbk-T Stmt-T 3.3E-14 1.0E-16 42 14
AssessQuestion-S NegFdbk-T 2.6E-13 8.1E-16 13 2
IncompleteTask Stmt-T 5.2E-10 1.6E-12 124 71
AssessQuestion-T NegFdbk-S 6.7E-10 2.1E-12 15 3

Learning an HMM involves training its emission, transition, and initial probability distributions to maxi-
mize the probability of seeing the observed data given the model. Model training is an iterative process that
terminates when the model parameters have converged or when a pre-specified number of iterations has
been completed. The fit of a model is measured with log-likelihood, which has a monotonic relationship
with likelihood and is less susceptible to numerical underflow. The iterative training process operates over
a particular number N of hidden states. Our training approach uses the Baum-Welch iterative training algo-
rithm (Rabiner, 1989) and incorporates a meta-level learning procedure that varies the number of hidden
states from two to twenty and selects the model size that achieves the best average log-likelihood fit in
ten-fold cross-validation.

HMMs can be graphically depicted in several different ways. Each depiction explicitly shows some
components of the model while omitting others for simplicity. Perhaps the most common depiction is a
time-slice view, in which each time step is displayed along with its associated hidden state and observation.
Missing from such a depiction is the probability of transitioning from one hidden state to the next, because
in a time slice view each transition did occur. In this article, the best-fit HMMs are displayed in a summary,
or Bayesian, view as shown in Fig. 4. This view depicts the hidden states as nodes within a graph, and
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Fig. 4. Time-slice and summary views of example HMM.

the emission probability distribution of each hidden state as a histogram within the node. Arrows indicate
transition probability distributions between hidden states, with heavier arrow weight indicating higher
probability. Since this is not a time-slice view, omitted from this diagram are the observations that are
generated at each time step.

Best-fit HMMs

The HMM that was fitted to the annotated tutoring sessions conducted with Tutor A features eight hidden
states. Figure 5 depicts a subset of this HMM in a summary view with nodes representing hidden states.
For simplicity, only those states that mapped to more than 5% of the observed data sequences are included.
Each hidden state was interpreted as a tutoring mode and named based on its structure. For example, State 4
is dominated by correct task actions; therefore, this state is referred to as Correct Student Work. State 6 is
comprised of student acknowledgements, pairs of tutor statements, some correct task actions, and assessing
questions by both tutor and student; we label this state Student Acting on Tutor Help. The best-fit model for
Tutor B’s dialogues features ten hidden states. A portion of this model, consisting of all states that mapped
to more than 5% of observations, is displayed in Fig. 6.

Model interpretation

Some tutoring modes with similar structures were identified by both models. The frequency distribution
across tutoring modes for each model is displayed in Fig. 7.

Both models feature a Correct Student Work mode characterized by the student’s successful completion
of a subtask. This state maps to 38% of observations with Tutor A and 29% of observations with Tutor
B. In both cases the Correct Student Work mode occurs more frequently than any other mode. The next
three most frequently occurring modes each map onto 10–15% of the observations. For Tutor A, one such
mode is Tutor Explanations with Feedback, while for Tutor B a corresponding mode is Tutor Explanations
with Assessing Questions. In both cases, the mode involves tutors explaining concepts or task elements.
A key difference is that with Tutor A, the explanation mode includes frequent negative content feedback
or positive content-free feedback, while for Tutor B the explanation mode features questions in which the
tutor aims to gauge the student’s knowledge. A similar pattern emerges with each tutor’s next most frequent
mode: for Tutor A, this mode is Student Work with Tutor Positive Feedback; for Tutor B, the mode is Student
Work with Tutor Assessing Questions. These corresponding modes illuminate a tendency for Tutor A to
provide feedback in situations where Tutor B chooses to ask the student a question. For Tutor A, the only
mode that featured assessing questions was Student Acting on Tutor Help. As we will discuss, increased
frequency of this mode was positively correlated with student learning.
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Fig. 5. Portion of learned HMM for Tutor A.

Correlations with student outcomes

With the learned models in hand, the next goal was to identify statistical relationships between student
learning and the automatically extracted tutoring modes. The HMMs mapped each sequence of observed
dialogue acts and task actions onto the set of hidden states (i.e., tutoring modes) in a maximum likelihood
fashion. The transformed sequences were used to calculate the frequency distribution of the modes that
occurred in each tutoring session (e.g., State 0 = 32%, State 1 = 15% ... State 8 = 3%). For each HMM,
correlations were generated between the learning gain of each student session and the relative frequency
vector of tutoring modes for that session to determine whether significant relationships existed between
student learning and the proportion of discrete events (dialogue and problem solving) that were accounted
for by each tutoring mode. For Tutor A, the Student Acting on Tutor Help mode (Fig. 8, Excerpt 1)
was positively correlated with learning (r = 0.51; p < 0.0001). For Tutor B, the Tutor Content Feedback
mode(Fig. 8, Excerpt 2) was positively correlated with learning (r = 0.55; p = 0.01) and the Work in Progress
mode was negatively correlated with learning (r = −0.57; p = 0.0077).

DISCUSSION

Effectiveness of tutoring modes

We have identified significant correlations between student learning gains and the automatically extracted
tutoring modes modeled in the HMMs as hidden states. While students who worked with either tutor
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Fig. 6. Portion of learned HMM for Tutor B.

Fig. 7. Relative frequency of hidden dialogue states across tutoring sessions.
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Fig. 8. Excerpts illustrating hidden dialogue states.

achieved significant learning on average, each group of students displayed a substantial range of learning
gains. The correlational analysis leverages this data spread to gain insight into which aspects of the tutorial
interaction were related to higher or lower learning gains.

For Tutor A, the relative frequency of the Student Acting on Tutor Help mode was positively correlated
with student learning. This mode was characterized primarily by student acknowledgments and also featured
tutor explanations, correct student work, positive tutor feedback, and assessing questions from both tutor
and student. The composition of this tutoring mode suggests that these observed events possess a synergy
that, in context, contributed to student learning. In a learning scenario with novices, it is plausible that only
a small subset of tutor explanations were grasped by the students and put to use in the learning task. The
Student Acting on Tutor Help mode may correspond to those instances, in contrast to the Correct Student
Work mode in which students may have been applying prior knowledge.

For Tutor B, the Tutor Content Feedback mode was positively correlated with student learning. This mode
was relatively infrequent, mapping to only 7% of tutoring events. However, as noted previously, providing
direct feedback represents a departure from this tutor’s more frequent approach of asking assessing ques-
tions of the student. Given the nature of the learning task and the corresponding structure of the learning
instrument, students may have identified errors in their work and grasped actionable new knowledge most
readily through this tutor’s direct feedback.

For Tutor B, the Work in Progress mode was negatively correlated with learning. This finding is consistent
with observations that in this tutoring study, students did not seem to operationalize easily new knowledge
that came through tutor hints, but rather, often needed explicit constructive feedback. The Work in Progress
mode features no direct tutor content feedback. Tutor questions and explanations (which are at a more
abstract level than the student’s solution) in the face of incomplete student work may not have been an
effective tutoring approach in this study.

Meaningfulness of hidden dialogue state

The statistically significant correlations found between hidden dialogue state and student learning pro-
vide support for the notion that in this context, HMMs can learn meaningful tutorial dialogue structure
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in an unsupervised fashion. This finding is reinforced by the fact that the relative frequencies of the
observations themselves (dialogue acts and task actions) were not significantly correlated with learning
gain. In this case, the occurrence of the hidden state, an aggregate structure over observation symbols,
contributed to characterizing the effectiveness of the tutorial dialogue better than the observations them-
selves.

Some limitations of the approach stem from the rich nature of human-human dialogue, and the uncertainty
it entails. Even within HMMs’ doubly stochastic framework, it is not possible to fully capture all relevant
variance in the observed sequences. The fact that only a subset of the hidden states was correlated with
student learning is, in part, an artifact of this limitation. Specifically, if the HMM could capture all patterns
that influence learning, we might expect all hidden states’ frequencies (not just a subset of them) to be
correlated either positively or negatively with learning.

Another limitation stems from the extent to which the annotation scheme, both for dialogue acts and
for task actions, is able to capture pedagogically relevant aspects of the interaction. There is no agreed
upon dialogue act annotation scheme for tutorial dialogue, and researchers must devise tagging schemes
based on the structure of their corpus, related learning and dialogue theories, and the particular aspects of
the dialogue that are of interest for their work. It is possible that with any annotation of tutorial dialogue
at this granularity, some pedagogically relevant phenomena are not explicitly represented within the tags.
Because the hidden dialogue states are aggregate structures defined by a probability distribution over the
tags, the tagging scheme has great impact on the results that can be obtained. For this reason, applying the
methodology presented here on a corpus tagged in several different ways will be an important direction for
future work.

CONCLUSION AND FUTURE WORK

Modeling the structure of tutorial dialogue is an important research direction that can contribute to inves-
tigating the sources of tutoring effectiveness as well as to the automatic authoring of tutorial dialogue
system behavior. Tutorial dialogue is thought to have a layer of unobservable stochastic structure that
includes cognitive, affective, and social dimensions. HMMs are a promising modeling framework because
they explicitly model hidden structure. The work reported here provides evidence that HMMs can capture
meaningful tutorial dialogue structure in an unsupervised fashion, as evidenced by the fact that the HMMs’
hidden states were correlated with student learning outcomes, while the states’ constituent observation
symbols were not themselves correlated with learning.

The results suggest that with novice computer programming students, receiving and acting on tutor help,
and receiving specific content feedback, were productive tutoring modes associated with higher learning
gains. In contrast, a work-in-progress mode characterized by incomplete student work and tutor moves that
contained no specific task feedback was associated with lower learning gains. The results extend findings
that have correlated learning with highly localized structures such as unigrams and bigrams of dialogue
acts (Boyer et al., 2008; Ohlsson et al., 2007; Litman & Forbes-Riley, 2006). This work takes a step toward
fully automatic extraction of tutorial strategies from corpora, a contribution that has direct application in
human tutoring research. The approach also has application in tutorial dialogue system development, for
example, by producing a data-driven library of system strategies.

A promising direction for future work involves learning models that more fully capture the tutorial
phenomena that influence learning. There seems to be significant room for improvement in this regard,
as evidenced by the fact that relatively few of the automatically extracted tutorial dialogue modes were
correlated with learning. Promising directions include explicitly capturing the task structure within the
dialogue model, such as with hierarchical HMMs, and exploring whether the difficulty of particular subtasks
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is related to the effectiveness of tutoring strategies, as emerging evidence suggests (Chi, VanLehn, & Litman,
2011). Future work should leverage details of the task structure to a greater extent by considering regularities
within tasks and subtasks as part of an augmented model structure in order to more fully capture details
of the tutorial interaction. Continued work on rich dialogue act and task annotation is also an important
direction for future work, since limitations of the annotation schemes impose limitations on the learned
models. Finally, deep linguistic analysis of dialogue utterances is an important area for future work, as are
other directions that have the potential to eliminate manual annotation from the pipeline and produce fully
unsupervised models of tutorial dialogue.
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