
Exploring Novice Programmers’ Hint Requests in an Intelligent
Block-Based Coding Environment

Joseph B. Wiggins1, Fahmid M. Fahid2, Andrew Emerson2, Madeline Hinckle2, Andy Smith2,
Kristy Elizabeth Boyer1, Bradford Mott2, Eric Wiebe2, and James Lester2

jbwiggi3@ufl.edu,ffahid@ncsu.edu,ajemerso@ncsu.edu,mthinckl@ncsu.edu,pmsmith4@ncsu.edu,
keboyer@ufl.edu,bwmott@ncsu.edu,wiebe@ncsu.edu,lester@ncsu.edu

1University of Florida, Gainesville, Florida
2North Carolina State University, Raleigh, North Carolina

ABSTRACT
Block-based programming environments arewidely used by novices
who are learning computer science. However, even in block-based
coding environments that have been carefully developed to serve
novices, students frequently struggle and require additional support.
A promising avenue to provide this support is the use of intelligent
tutoring systems, which offer adaptive hints to assist learners. In
order to provide students with the adaptive hints they need, we
must investigate their help-seeking behaviors and identify patterns
surrounding their need for support. In this experience report, we
examine data collected from 174 college students in an introductory
engineering course, who used an intelligent block-based coding
environment to learn computer science. These students made more
than 1,000 hint requests, which we represent in two-dimensional
space along axes of elapsed time and code completeness. Analysis
revealed five major clusters of hint requests, which we further char-
acterized through qualitative examination of the coding trajectories
that preceded each hint request. We also analyzed how students’
incoming knowledge and perceived computer skill were related
to their help-seeking behaviors. Students with higher incoming
knowledge requested hints when their code was more complete
than students with lower incoming knowledge. Students with high
perceived computer skill asked for hints when their code was less
complete than those with low perceived computer skill. The results
presented here provide insight into student help-seeking behavior
in computer science education, informing CS educators and system
designers on how best to develop support strategies.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Applied computing→ Education.

KEYWORDS
Help-seeking behavior; CS1; intelligent tutoring system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432538

ACM Reference Format:
Joseph B.Wiggins1, FahmidM. Fahid2, AndrewEmerson2, MadelineHinckle2,
Andy Smith2, Kristy Elizabeth Boyer1, Bradford Mott2, Eric Wiebe2, and
James Lester2. 2021. Exploring Novice Programmers’ Hint Requests in an
Intelligent Block-Based Coding Environment. In Proceedings of the 52nd
ACM Technical Symposium on Computer Science Education (SIGCSE ’21),
March 13–20, 2021, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3408877.3432538

1 INTRODUCTION
Novice programmers have historically struggled in introductory
computer science courses and suffer from high attrition rates [3].
In recent years, block-based programming languages have become
frequently used in introductory programming courses because they
eliminate many of the common challenges novice programmers
encounter [31]. The use of block-based programming languages in
introductory courses has many benefits, such as reduced cognitive
load [33], improved understanding of programming structure [32],
and increased efficiency while completing programming tasks [24].

Despite the advantages that block-based environments offer,
learning to program presents novices with significant challenges
[20]. An important open area of research involves how to best
provide support, such as hints, to novice programmers [5]. Uti-
lizing instructional strategies such as scaffolding, which slowly
reduces student assistance as mastery is achieved, has been shown
to improve metacognitive skills and increase learning gains [15, 26].
Several decades of work in the intelligent tutoring systems research
field provide a basis for investigating this open area by showing,
for example, the importance of timely feedback [2], the prevalence
of students abusing hinting systems to get answers without having
to invest in the task [29], the importance of help seeking in self-
regulated learning [1], and how intelligent tutoring systems can be
integrated into block-based programming environments [25].

In this experience report, we present a data-driven exploration
of novice students’ hint requests using a block-based learning en-
vironment for undergraduate introductory computer science. We
clustered students’ hint requests in two-dimensional space along
axes of elapsed time (since the student began coding) and code com-
pleteness (which we calculate by evaluating the abstract syntax tree
similarity between the student’s code and expert-authored code) at
the moment they requested the hint. Quantitative analysis of the
hint requests revealed there were relationships between students’
CS concept knowledge, perception of their computer skills, and
hint-requesting behavior. Qualitative analysis of the resulting clus-
ters revealed patterns in the code completeness, knowledge level,

https://doi.org/10.1145/3408877.3432538
https://doi.org/10.1145/3408877.3432538

and perceived computer skill of students who were likely to request
hints in those clusters. For each cluster of hint requests, we dis-
cuss approaches to provide further support in those contexts. This
work can inform CS educators and system designers on patterns in
students’ hint requests and suggestions for support strategies that
would improve novice programmers’ experiences.

2 RELATEDWORK
A growing body of research has investigated the impact of different
types of support during programming for novices. Price et al. [25]
created a block-based programming environment, iSnap, that au-
tomatically generates contextual hints for students based on their
detailed action logs. The authors found that most students were
willing to use hints and that hints can lead to positive learning
outcomes. Zhi et al. [34] compared instances of when a student re-
ceived worked examples in their programming tasks, showing that
worked examples do not result in significant learning improvements
but can help reduce cognitive load and time to solve programming
problems. In addition to reducing time spent on problems, support
in block-based programming keeps students engaged [30].

Automated feedback techniques are increasingly being utilized
to assist teachers in large class settings. A primary goal of auto-
mated feedback is to give insightful hints that then result in fewer
errors and misconceptions [12]. To properly address errors and
misconceptions, it is important to first identify students in need
of help. Recent studies have identified students that are at-risk or
struggling through programming trajectory analysis [7], early pre-
diction models such as neural networks [4], and keystroke-based
models of student performance [21].

Previous work has also aimed to improve existing automated
feedback systems by addressing errors in student code that prevents
expert-designed test cases from being executed [22]. Several other
studies have aimed to assist teachers by effectively grouping student
programs to facilitate feedback. For example, subgraph matching
techniques have been used to match natural language feedback to
code in introductory programming MOOCs [17]. Creating effective
automated hinting systems for block-based programming environ-
ments is still an active area of research. For example, a recent study
by Leite et al. [16] comparedmachine-generated feedback to human-
authored feedback, showing that human feedback helped students
obtain better conceptual understanding of programming concepts
and improved student performance on class exams. This work illus-
trates that more research is needed to improve machine-generated
feedback mechanisms.

As more research in block-based programming languages is be-
ing conducted, large volumes of data are being generated which
create opportunities to observe novel patterns. Data mining tech-
niques, such as cluster analysis, can provide a way to visually in-
spect student experiences to generate more relevant feedback [9].
Similarly, clustering can be used to group common student mis-
conceptions to better understand where students struggle in both
general block-based programming and specific programming activ-
ities [6, 13]. The work presented in this paper uses cluster analysis
to focus on students’ help-seeking behaviors while coding.

Code State Hint
No addition of
user inputs

"To increase the current value of a variable,
you can use the math operation block with
a set variable block"

Same variable is
being used to re-
ceive input twice

"If you try to read user input again, the old
input value will be overwritten. Store the
user’s input in a separate variable to keep
track of what the user has entered"

No subtraction in
countdown code

"Make sure you are decreasing the count-
down inside of the repeat loop"

Table 1: Sample hints and the conditions that generate them.

3 INTELLIGENT BLOCK-BASED LEARNING
ENVIRONMENT

We have been developing an adaptive block-based programming
environment to support novice programmers in their learning of
introductory computer science. The goal of this system is to serve
both as a tool that educators can use during the first few weeks
of their introductory programming courses and, alternatively, as a
standalone environment that self-directed learners can utilize to
learn programming concepts.

In the system, students build their programs using a customized
version of Google’s Blockly block-based programming plugin [8].
Learners proceed through twenty programming activities, where
each successive activity builds on the skills learned from the previ-
ous one. These activities are organized into three units: 1) Environ-
ment tutorial, Input/Output, Numeric data types, Expressions, Vari-
ables, Iteration; 2) Abstraction, Functions, Parameters; 3) Boolean
data types, Conditionals, Indefinite iteration, Debugging. This expe-
rience report focuses on three programming activities from Unit 1
that introduce students to loops. The first activity has the students
gathering five numbers and then displaying the sum of those num-
bers, the second activity has the students introducing a "repeat"
block (a block that repeats a set of code some constant amount of
iterations), and finally the third has the students count down to
zero from a number entered by the student. We focus on these activ-
ities because they are sufficiently challenging that many students
requested hints while attempting the programming activities.

3.1 Intelligent Hinting System
The intelligent hinting system is designed with a fixed progression
of programming activities and a button to request hints from the
system. As shown in Figure 1, the hint button is in the upper right
corner of the web interface, accessible to the student at any time.
Each time that button is pressed, the system compares the student’s
code state to a set of expert-authored regular expressions which
were refined over several iterations, and then delivers a hint to the
student. Hints were either a suggestion for a next step ("Now that
there’s a number stored in the variable, see what happens when you
print the variable") or extra details about a block that was relevant
to the current task ("The repeat block lets you take a segment of
code and repeat it as many times as you want"). For some examples
of hints, see Table 1.

Figure 1: The block-based learning environment interface
is divided into four sections: the programming activity de-
scription in the top left, the coding pane in the bottom left,
the hint request button in the top right, and the output in
the bottom right.

3.2 Study Design
We conducted the study using the system at a large public uni-
versity in the United States in Fall 2019. The participants in this
IRB-approved study were from one of two online sections for an
introductory engineering course and received extra credit for com-
pleting the study. The introductory engineering course reviewed
some computing concepts such as file systems and html, but did
not cover any programming concepts. A total of 342 consenting
participants logged on to the system, and of those, 174 partici-
pants attempted or completed at least one of the three activities.
These participants had an average age of 18.76, with 34.29% of
them reporting their gender as female and 65.71% as male. Students
reported majoring in primarily non-CS such as engineering disci-
plines, math, agricultural science, or undecided (79.43%); computer
science (20.57%). Of these students, 71.26% reported their ethnicity
as White, 14.94% as Asian, 4.02% as African American, 4.02% as
Hispanic and 3.35% as Other. The rest did not report their ethnicity
(2.41%).

3.3 Survey Data
We collected measurements of students’ incoming knowledge of
computer science through block-based test questions, and their
perceived computer skill. The concepts in the pretest were mapped
to computer science skills, knowledge, and abilities (FKSAs) present
in the exercises, using a process similar to Grover and Basu [10, 11].
We assessed perceived computer skill by asking the following ques-
tion: How skilled are you with computers, compared to the average
person? (much more skilled, somewhat more skilled, average, some-
what less skilled, much less skilled). Students had an average pretest
score of 55.75 out of 100 (standard deviation 20.22) and an average
perceived computer skill of 3.38 out of 5 (standard deviation 0.86).

3.4 Hint-Related Metrics
The students in this study made a total of 1,063 hint requests during
the three programming activities. To characterize their help-seeking
behaviors, we represented each hint request as a two-dimensional

point along axes of elapsed time and code completeness, as we now
detail.

Elapsed time indicates the number of seconds since the student
started the programming activity. The calculation of elapsed time
in a web-based environment can be complicated due to the fol-
lowing behaviors: students may shuffle between activities (likely
checking the previous programming activity descriptions), and stu-
dents may leave the web interface open in a tab for long periods of
time without working on the programming activity. In the elapsed
time calculation, we do not include brief periods of time in which
no other actions were taken. To correct for students leaving the
browser open for a long time without progress, we first calculated
the median time between student actions in the block-based pro-
gramming interface. This median was 29.96 seconds. For any gap
longer than 5 minutes between actions, we replaced those times
with the median gap time. The 5-minute threshold was selected
based on the 3rd quartile value of gaps between actions in the inter-
face (30.06 seconds) because visually inspecting the data revealed
that time gaps above the 3rd quartile became much longer and
were likely associated with the student no longer working in the
interface for that time. This heuristic approach has a limitation in
that if a student were still actively considering the task but not
taking any actions, we could artificially decrease their elapsed time.

The second characteristic that we calculated for each hint re-
quest was code completeness. This was calculated by first convert-
ing the student’s block-based code to standard Python code and
then measuring the abstract syntax tree (AST) similarity (Dam-
erau–Levenshtein distance) with an expert-authored solution using
the analysis package pyastsim1. This measure allows for the com-
parison of the code between different moments in time, and trends
in the trajectory of the code to be observed (e.g. the code is getting
closer to the solution over time).

4 RESULTS
The goal of this experience report is to analyze patterns in student
help-seeking behaviors to understand commonalities in the condi-
tions under which they ask for hints. To accomplish this, we first
compared those students who did and did not ask for hints during
the three programming activities. After uncovering features that
distinguish hint requesters from non-hint requesters, we conducted
a cluster analysis on only the hint requesters.

4.1 How Do Hint Requesters Differ from
Non-Hint Requesters?

During the completion of the three programming activities, many
students requested hints from the system. Those requests are the
focal point of this paper, but before we excluded students who did
not ask for help, we first analyzed how these groups differed. Table
2 highlights some differences in incoming characteristics of each
group.

There were significant differences (p < 0.05) in pretest scores
between hint requesters and non-hint requesters using a two-tailed
t-test, with hint requesters having lower pretest scores. Similarly,
the hint requesters also reported significantly lower perceived com-
puter skills than those students who did not ask for hints. We found
1https://pypi.org/project/pyastsim/

Hint
Requesters
(𝑛 = 130)

Non-Hint
Requesters
(𝑛 = 44)

p-Value

Pretest Scores (out of
100)

53.37
(19.30)

65.78
(20.00)

<0.001

Perceived Computer
Skill (out of 5)

3.27 (0.87) 3.72 (0.75) 0.003

Table 2: Comparison of students who requested hints and
those who did not (p-Value calculated using a two-tailed t-
test).

Figure 2: Histogram and box plot of code completeness (left)
and elapsed time (right) for the requested hints.

no demographic differences between these groups related to gender
or ethnicity.

4.2 How Do Student Characteristics Correlate
with Their Hint-Requesting Behaviors?

This analysis focuses on the two metrics calculated for each hint
request: elapsed time and code completeness. In the cluster anal-
ysis we will consider these as two dimensions that represent an
instance of help-seeking. Before we review their two dimensional
distributions, we examine each metrics’ individual distributions
(Figure 2).

As shown in Figure 2, students most frequently asked for help
early in their coding session, before making substantial progress
toward the solution. It is also important to consider how these
metrics are influenced by student pretest score and perceived com-
puter skill. Table 3 displays the correlations between pretest scores,
perceived computer skill, elapsed time, and code completeness. To
avoid overrepresentation of students who asked for more hints, we
averaged the elapsed times of each individual student’s set of hint
requests and averaged the code completeness level across all of that
student’s hint requests.

Pearson’s R revealed significant correlations (p < 0.05) between
pretest score, perceived computer skill, and the code completeness
at the time of the hint requests. Perceived computer skill had a neg-
ative correlation with the code completeness at the time of the hint

Features Correlation p-Value
Perceived Computer Skill & Code
Completeness at Hint Request Time

-0.1887 0.0316

Pretest Score & Code Completeness at
Hint Request Time

0.2781 0.0014

Pretest Score & Computer Skill -0.2057 0.0189
Table 3: Correlations between students incoming character-
istics and their average hint requesting metrics (p-Value cal-
culated using Pearson’s R).

Figure 3: Clusters of hint asking behavior.

requests. In other words, students with lower perceived computer
skill completed more code before requesting a hint than students
with higher perceived computer skill. Pretest score had a positive
correlation with code completeness; in other words, students with
higher pretest scores completed more code before asking for a hint.

4.3 What Clusters of Hint Asking Behavior
Arise?

To cluster similar hint requests, we used 𝐾 -means clustering in
the JMP package2. 𝐾-means clustering partitions data points into
𝑘 clusters by optimizing a metric of cluster separation (distance
between different clusters) and cohesion (points within one cluster
being close to each other). We utilized cubic clustering criterion
as this metric [27]. The ideal 𝑘 is often not known a priori. We
explored 𝑘=3, 4, 5, and 6, and found that five clusters resulted in
the optimal clustering based on the clustering criterion. The five
clusters of hints are shown in Figure 3.

4.3.1 Cluster 1 - Where Do I Start? The cluster containing the
largest number of hint requests is characterized by a code complete-
ness score of 4%, meaning that the code had a very low similarity to
functional code and was most likely only one block. This cluster’s
typical hint request had an elapsed time of 352 seconds, which
is only a few minutes after the start of the programming activity.
Figure 4 displays a typical code trajectory preceding a hint request
2https://www.jmp.com/en𝑢𝑠/𝑜 𝑓 𝑓 𝑒𝑟𝑠/𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 − 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 − 𝑠𝑜 𝑓 𝑡𝑤𝑎𝑟𝑒.ℎ𝑡𝑚𝑙

in this cluster, in which only one to two blocks were added before
turning to the hint button. These hint requests may represent a
“Where Do I Start?” attitude toward utilizing the hint feature, as
we further discuss in Section 5.

4.3.2 Cluster 2 - Does This Look Right? The second largest cluster
of hint requests is characterized by a code completeness score of
70% and an elapsed time of 679 seconds. The requests for help
in this cluster were representative of students who were fairly
close to completion in the first 11 minutes. Figure 4 displays a
typical code trajectory preceding a hint request in this cluster. The
code displayed in the graph started improving within the first 250
seconds and had a fairly steady progression upwards. These hint
requests may represent a “Does This Look Right?” mindset, as we
further discuss in Section 5.

4.3.3 Cluster 3 - I Think I’m Missing Something. The third largest
cluster of hint requests is characterized by a code completeness
score of 8% and an elapsed time of 2142 seconds. This cluster seemed
to have experienced difficulty getting started on the programming
activity or had attempted a few solutions and later deleted their
code. Figure 4 shows a typical code trajectory preceding a hint
request in this cluster. The student has managed to make some
progress towards the goal and made a step backwards. They also
have been frequently asking for hints up until the hint request.
These hint requests may represent an “I Think I’m Missing Some-
thing” mindset, as we further discuss in Section 5.

4.3.4 Cluster 4 - This Time For Sure. . . Right? The second smallest
cluster of hint requests is characterized by a code completeness
score of 84% and an elapsed time of 3330 seconds. Figure 4 displays
a typical code trajectory that leads to hint requests in this cluster.
This sample displays a slow progression followed by a plateau that
eventually results in a request for help. This cluster is very similar
to Cluster 2, with the programming activity being engaged with for
a longer period of time. These hint requests may represent a “This
Time For Sure. . . Right?” mindset, as we further discuss in Section
5.

4.3.5 Cluster 5 - I’m Out of Ideas. Help, Please. The final, and small-
est, cluster of hint requests is characterized by a code completeness
score of 11% and an elapsed time of 8193 seconds. This cluster is
characterized by frequent disengagement from the activity, some-
times leaving the activity open for 14 hours at a time (although
these actions were not considered in the calculation of elapsed time,
as described in Section 3.4). These behaviors seem to have been
related to this cluster getting stuck on the programming activity
because of prolonged confusion leading to disengagement with the
system. Figure 4 displays a typical code trajectory that leads to
hint requests in this cluster. As shown in Figure 4, hint requests
in this cluster also frequently asked for help in clusters 1 and 3.
These students had started many different solutions and ultimately
restarted their code several times. These hint requests may rep-
resent a “I’m Out Of Ideas. Help, Please.” mindset, as we further
discuss in Section 5.

Figure 4: Sample student code trajectory preceding a hint in
clusters 1, 2, 3, 4, and 5.

5 DISCUSSION
The results reveal that incoming knowledge and perceived com-
puter skill were correlated with code completeness at the time
of the hint: students with higher incoming knowledge completed
more code before asking for hints. Students with higher perceived
computer skill asked for hints when their code was less complete.
Cluster analysis revealed five distinct clusters of hint requests, each
characterized by differing levels of code completeness and elapsed
time.

Cluster 1 - Where Do I Start? The largest cluster of hint re-
quests (562 hints) happened early in the programming activity and
with a very low level of code completeness. This behavior likely in-
dicates students not knowing how to start the activity. Redirecting
the students towards the programming activity description to help
them identify phrases that they should attempt to translate into
code first may be an effective first response [23]. Providing more
granular instructions or even code starters to help them overcome
these early hurdles to progress through the exercise [14] have both
been pointed out in the literature as effective approaches.

Cluster 2 - Does This Look Right? The second largest cluster
(359 hints) was typified by a slightly larger elapsed time than the
first cluster, but at a much higher code completeness level of 70%.
The literature suggests that rather than highly directive “next-step”
hints, feedback after significant progress could focus on statements
affirming students’ progress with positive feedback and prompting
them with a reflective question about their code [19, 28].

Cluster 3 - I Think I’mMissing Something. The third largest
cluster (86 hints) occurred much later in elapsed time than the
prior two clusters but had a typical code completeness score of
only slightly better than the first cluster, at 8%. Feedback after
students restart their code could highlight the successful elements
in their previous attempts and provide help based on what they had
previously done correctly, rather than starting from the beginning
as may have been more helpful for Cluster 1.

Cluster 4 - This Time For Sure. . . Right? The second smallest
cluster (38 hints) occurred slightly later than Cluster 3, and at the
highest code completeness of any cluster, at 84%. The sample code
trajectory displays the code completeness gradually increasing over
time until a prolonged plateau preceding the hint request. When a
hint is requested in this cluster, the student may be more likely to
be frustrated by more reflective prompts, and may respond better
to more direct feedback. A strategy that has shown to improve
learning in some students is to have the tutor deliver some extra
educational content and then question the student [18]. As these
students are close to the solution, more analysis identifying the
specific states students are getting stuck on will be important for
generating feedback to effectively overcome their specific issues.

Cluster 5 - I’m Out of Ideas. Help, Please. The smallest clus-
ter (19 hints) had the lowest code completeness (11%) and almost
three times longer elapsed time than Cluster 4. To respond to hint
requests at this stage, the literature would suggest using worked
examples and bottom-out hints [34] since the requests likely stem
from being stuck and having immense difficulty completing the pro-
gramming activity. This hinting strategy has been shown to reduce
cognitive load and help students finish their code, but is unlikely to
result in learning gain [34]. Ideally, a system would be capable of

proactively intervening before a student reaches this point, whereas
the current system could only give hints when requested.

Limitations. A limitation of this analysis and data set is that
the help requesters are self-selecting, although this is unavoidable
to study the natural occurrence of help-seeking behaviors. It is
also important to consider that marginalized groups in computing
may rate their skills and confidence lower than their peers and
this could impact results surrounding perceived computer skill.
Students in our sample were also not graded on the number of
completed activities, so not all students completed the first activity
represented in this work, meaning our sample may not contain
some of the students with the highest need for support. Another
consideration is the well-documented phenomenon of hint abuse
and hint refusal [29], both of which may skew this data and not
make it representative of all students.

6 CONCLUSION
Intelligent tutoring systems designed for computer science learn-
ing can utilize a wide range of approaches for providing hints to
students. Investigating when, and under what conditions, students
request hints in an intelligent tutoring system allows for prioritiza-
tion in what kinds of feedback should be focused on. In order to
provide high-quality hints that will be useful for students, it is crit-
ical to develop a nuanced understanding of students’ help-seeking
behavior.

The goal of this analysis was to discover patterns in student
help-seeking behaviors as they interacted with the intelligent block-
based coding environment. From the dataset of 174 students, 130
of them requested at least one hint from the system during the
programming activities. By considering both code trajectories and
elapsed time on programming activity, these 1,063 hint requests
were represented in two-dimensional space by five clusters. Based
on empirical attributes of the hint requests, as well as qualitative
analyses of code trajectories preceding the hint request, this paper
discussed recommendations for how systems or instructors could
effectively tailor support.

Futurework should focus on implementing and evaluating context-
sensitive hint strategies that take elapsed time and code complete-
ness into account. Additionally, we should consider the interplay
of student characteristics and help-seeking behaviors. In this work,
incoming knowledge and perceived computer skill were shown to
differ significantly between hint requester and non-hint requester,
and have significant correlations with code completeness at the
time of each hint request. These characteristics, along with others,
likely play a more nuanced role in how hints are requested and
overall system interaction. This line of investigation may benefit
educators and system designers by providing insights on how to
build better hints, and how to more effectively build automated
help systems.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation through
the grants DUE-1626235 and DUE-1625908. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES
[1] Vincent Aleven, Ido Roll, Bruce M McLaren, and Kenneth R Koedinger. 2016.

Help helps, but only so much: Research on help seeking with intelligent tutoring
systems. International Journal of Artificial Intelligence in Education 26, 1 (2016),
205–223.

[2] John R Anderson, Albert T Corbett, Kenneth R Koedinger, and Ray Pelletier. 1995.
Cognitive tutors: Lessons learned. The Journal of the Learning Sciences 4, 2 (1995),
167–207.

[3] Theresa Beaubouef and John Mason. 2005. Why the high attrition rate for
computer science students: Some thoughts and observations. ACM SIGCSE
Bulletin 37, 2 (2005), 103–106.

[4] Karo Castro-Wunsch, Alireza Ahadi, and Andrew Petersen. 2017. Evaluating
neural networks as a method for identifying students in need of assistance. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. 111–116.

[5] Paul Denny, Brett A Becker,Michelle Craig, GregWilson, and Piotr Banaszkiewicz.
2019. Research this! Questions that computing educators most want computing
education researchers to answer. In Proceedings of the 2019 ACM Conference on
International Computing Education Research. 259–267.

[6] Andrew Emerson, Andy Smith, Fernando J Rodríguez, Eric N Wiebe, Bradford W
Mott, Kristy Elizabeth Boyer, and James C Lester. 2020. Cluster-based analysis of
novice coding misconceptions in block-based programming. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education. 825–831.

[7] Anthony Estey, Hieke Keuning, and Yvonne Coady. 2017. Automatically classify-
ing students in need of support by detecting changes in programming behaviour.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. 189–194.

[8] Neil Fraser et al. 2013. Blockly: A visual programming editor. URL: https://code.
google. com/p/blockly 42 (2013).

[9] Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller.
2015. OverCode: Visualizing variation in student solutions to programming
problems at scale. ACM Transactions on Computer-Human Interaction (TOCHI)
22, 2 (2015), 1–35.

[10] Shuchi Grover. 2020. Designing an assessment for introductory programming
concepts in middle school computer science. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education. 678–684.

[11] Shuchi Grover and Satabdi Basu. 2017. Measuring student learning in introduc-
tory block-based programming: Examining misconceptions of loops, variables,
and boolean logic. In Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education. 267–272.

[12] Georgiana Haldeman, Andrew Tjang, Monica Babeş-Vroman, Stephen Bartos, Jay
Shah, Danielle Yucht, and Thu D Nguyen. 2018. Providing meaningful feedback
for autograding of programming assignments. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education. 278–283.

[13] David Joyner, Ryan Arrison, Mehnaz Ruksana, Evi Salguero, Zida Wang, Ben
Wellington, and Kevin Yin. 2019. From clusters to content: Using code clustering
for course improvement. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 780–786.

[14] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2019. How teachers would
help students to improve their code. In Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Education. 119–125.

[15] Joo Yeun Kim and Kyu Yon Lim. 2019. Promoting learning in online, ill-structured
problem solving: The effects of scaffolding type and metacognition level. Com-
puters & Education 138 (2019), 116–129.

[16] Abe Leite and Saúl A Blanco. 2020. Effects of human vs. automatic feedback on
students’ understanding of AI concepts and programming style. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education. 44–50.

[17] Victor J Marin, Tobin Pereira, Srinivas Sridharan, and Carlos R Rivero. 2017.
Automated personalized feedback in introductory Java programming MOOCs.

In 2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE,
1259–1270.

[18] Christopher M. Mitchell, Eun Young Ha, Kristy Elizabeth Boyer, and James C.
Lester. 2013. Learner characteristics and dialogue: Recognizing effective and
student-adaptive tutorial strategies. International Journal of Learning Technology
(IJLT) 8, 4 (2013), 382–403.

[19] Antonija Mitrovic, Stellan Ohlsson, and Devon K Barrow. 2013. The effect of
positive feedback in a constraint-based intelligent tutoring system. Computers &
Education 60, 1 (2013), 264–272.

[20] Jan Moons and Carlos De Backer. 2013. The design and pilot evaluation of an
interactive learning environment for introductory programming influenced by
cognitive load theory and constructivism. Computers & Education 60, 1 (2013),
368–384.

[21] Jonathan P Munson and Joshua P Zitovsky. 2018. Models for early identification
of struggling novice programmers. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. 699–704.

[22] Sagar Parihar, Ziyaan Dadachanji, Praveen Kumar Singh, Rajdeep Das, Amey
Karkare, and Arnab Bhattacharya. 2017. Automatic grading and feedback using
program repair for introductory programming courses. In Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education.
92–97.

[23] James Prather, Raymond Pettit, Brett A Becker, Paul Denny, Dastyni Loksa, Alani
Peters, Zachary Albrecht, and Krista Masci. 2019. First things first: Providing
metacognitive scaffolding for interpreting problem prompts. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education. 531–537.

[24] ThomasWPrice and Tiffany Barnes. 2015. Comparing textual and block interfaces
in a novice programming environment. In Proceedings of the Eleventh Annual
International Conference on International Computing Education Research. 91–99.

[25] Thomas W Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: Towards
intelligent tutoring in novice programming environments. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education. 483–488.

[26] Siti NurulainMohd Rum andMaizatul Akmar Ismail. 2017. Metocognitive support
accelerates computer assisted learning for novice programmers. Journal of
Educational Technology & Society 20, 3 (2017), 170–181.

[27] Warren S Sarle. 1983. Cubic clustering criterion. SAS Institute.
[28] Alexandria Katarina Vail and Kristy Elizabeth Boyer. 2014. Identifying effective

moves in tutoring: On the refinement of dialogue act annotation schemes. In
International Conference on Intelligent Tutoring Systems. Springer, 199–209.

[29] Jason AWalonoski and Neil T Heffernan. 2006. Detection and analysis of off-task
gaming behavior in intelligent tutoring systems. In International Conference on
Intelligent Tutoring Systems. Springer, 382–391.

[30] WengranWang, Rui Zhi, AlexandraMilliken, Nicholas Lytle, and ThomasWPrice.
2020. Crescendo: Engaging students to self-paced programming practices. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education.
859–865.

[31] Christopher Watson and Frederick WB Li. 2014. Failure rates in introductory
programming revisited. In Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education. 39–44.

[32] David Weintrop and Uri Wilensky. 2015. Using commutative assessments to
compare conceptual understanding in blocks-based and text-based programs..
In Proceedings of the Eleventh Annual International Conference on International
Computing Education Research, Vol. 15. 101–110.

[33] Benjamin Xie and Hal Abelson. 2016. Skill progression in MIT app inventor.
In 2016 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 213–217.

[34] Rui Zhi, Thomas W Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes,
and Min Chi. 2019. Exploring the impact of worked examples in a novice pro-
gramming environment. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 98–104.

	Abstract
	1 Introduction
	2 Related Work
	3 Intelligent Block-Based Learning Environment
	3.1 Intelligent Hinting System
	3.2 Study Design
	3.3 Survey Data
	3.4 Hint-Related Metrics

	4 Results
	4.1 How Do Hint Requesters Differ from Non-Hint Requesters?
	4.2 How Do Student Characteristics Correlate with Their Hint-Requesting Behaviors?
	4.3 What Clusters of Hint Asking Behavior Arise?

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

