

Toward Adaptive Collaborative Support for
Elementary Students Learning Computer

Science

Jennifer Tsan
North Carolina State University

jtsan@ncsu.edu
717-318-7836
Raleigh, NC

Advisors:

Collin F. Lynch, North Carolina State University
Kristy Elizabeth Boyer, University of Florida

Toward Adaptive Collaborative Support for Elementary Students
Learning Computer Science

Jennifer Tsan, North Carolina State University, jtsan@ncsu.edu

Collin F. Lynch, North Carolina State University, cflynch@ncsu.edu
Kristy Elizabeth Boyer, University of Florida, keboyer@ufl.edu

Abstract: Collaboration is an important aspect of learning. For computer science, pair
programming has been shown especially beneficial. I have begun to study pair programming
dialogue with elementary school students doing block-based programming. My preliminary
results show that students can struggle to engage in balanced collaborations. This problem is
in part due to difficulty sharing the controls, a lack of understanding of pair programming
roles, and the need to build good collaborative dialogue practices. For my dissertation, I
propose to develop and iteratively refine a collaborative block-based programming
environment to support real-time collaboration for young students.

Keywords: K-12, pair programming, real-time collaboration

Goals of Research
The goal of this research is to gain insight into how young children pair program and how we can better support
them. Pair programming is a method in which two programmers work side by side. One programmer is the
driver who has control of the keyboard and mouse and does the coding. The other programmer is the navigator,
who is to actively watch the driver program, look for mistakes, think ahead to solve the problem, and ask
questions. Programmers generally switch roles after an allotted amount of time or after a task is completed.
Studies using pair programming indicate that it leads to increased confidence in students, a higher course
completion rate for undergraduate students, and higher quality code (Braught, Wahls & Eby 2011; Cockburn &
Williams, 2000; McDowell, Werner, Bullock & Fernald, 2002).

Research questions
My overarching research question is, How can we improve current programming environments to adaptively
support elementary students in pair programming? To investigate that question I will also address the question,
How can we build adaptive programming environments to support good collaborative dialogue practices?

Current Status and Preliminary Results
I collected data from a computer science elective in an elementary school, including videos of students pair
programming. Research questions I have started to investigate are: How do young coders balance their
dialogue, turn-taking and control during collaborative computer science learning?; and How do young learners
coordinate their dialogue during collaboration for computer science? I found that elementary students are often
unbalanced in terms of how much they speak, drive, and contribute ideas to the project. The imbalance in the
pair programming relationships may be due to students having difficulty understanding their roles and not
knowing good dialogue practices for collaboration. Therefore, to support the students, we should teach them
good pair programming and collaborative dialogue skills. These skills include: staying active in either role, with
both students contributing suggestions throughout the process and the navigator asking more questions; sharing,
not only the keyboard and mouse, but also the responsibilities of their roles; and building upon each other’s
ideas.

Plan
After identifying problems and potential support points for young students pair programming, I would like to
modify existing programming environments such as Scratch to better support their pair programming process. I
specifically plan to help students to share and stay active in their roles. When pair programming on one
computer, it may be difficult for students to know how to share physical controls, even when they are assigned
roles. Therefore, it may be helpful to modify the environment to allow multiple students to login using different
computers to view and modify the same project. Such collaborative tools are available for textual programming
(Tran, et al., 2013; Goldman, Little & Miller, 2011), however, few are available for young children (Al-Jarrah &
Pontelli, 2014).

The modified programming environment will allow the students to work on the same project on separate
computers. We will consider a number of design decisions based on user studies and iterative refinement, as
well as a literature review of existing collaborative tools for young children and broader audiences. These design
considerations include:

• How should the synchronized collaborative support be designed?
o Should both students be able to edit at the same time, similar to how collaborators can work in

Google docs?
o Should we limit it to only person editing at once? The work will synchronize and both partners

will be able to see the changes and they can switch controls at any time, but the partner who
isn’t editing cannot make changes.

o Should we limit it to only the driver editing? The work will synchronize and both partners can
see the changes. After an allotted amount of time (i.e., 10 minutes) the software could have the
students switch roles and the current driver will be the only one that can make edits.

• What types of messages should be delivered, and when, to support effective collaboration for computer
science problem solving?

Issues and Problems for Further Discussion
At the doctoral consortium, I would like to receive feedback on my research plan. After a literature review and
initial pilot, I plan to iteratively test and refine the software. For the studies, I will recruit elementary students
who are participants of clubs or classes that involve programming, technology, or computer science. The
students will be given 1 hour of instruction on the environment, take individual pre-tests, and then they will pair
program to solve a problem using the modified version of the coding environment. Afterwards, they will take
individual post-tests and surveys, then I will hold 30-minute focus groups to obtain feedback on how well the
software ran and supported the pair programming process. Then studies will have two conditions: students pair
programming on one computer using the original coding environment; and students pair programming on two
computers using the modified coding environment. These conditions will help me determine the ways in which
the features I add support student collaboration.

After each study, I will analyze the students’ dialogue and actions to determine whether students in the
experiment condition used better collaborative dialogue practices and fulfilled each role better. In addition, I
will calculate the students’ learning gains to determine whether students in a specific condition benefited more
from their collaboration. Between each study, I will refine the software based on the findings from the data.

Expected contributions
By the end of my dissertation I would like to have contributed methods and a tool to further support young
students collaboratively solving programming problems. I hope my work will enlighten the community on how
we can better support collaboration between young students in the future.

References
Al-Jarrah, A., & Pontelli, E. (2014). " AliCe-ViLlagE" Alice as a Collaborative Virtual Learning Environment.

In Frontiers in Education Conference (FIE), 2014 IEEE (pp. 1-9).
Braught, G., Wahls, T., & Eby, L. M. (2011). The case for pair programming in the computer science classroom.

ACM Transactions on Computing Education (TOCE), 11(1), 2.
Cockburn, A., & Williams, L. (2000). The costs and benefits of pair programming. Extreme programming

examined, 223-247.
Goldman, M., Little, G., & Miller, R. C. (2011). Collabode: collaborative coding in the browser. In Proceedings

of the 4th international workshop on Cooperative and human aspects of software engineering (pp. 65-
68).

McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2002). The effects of pair-programming on performance
in an introductory programming course. ACM SIGCSE Bulletin, 34(1), 38-42.

Tran, H. T., Dang, H. H., Do, K. N., Tran, T. D., & Nguyen, V. (2013). An interactive Web-based IDE towards
teaching and learning in programming courses. In Teaching, Assessment and Learning for Engineering
(TALE), 2013 IEEE International Conference on (pp. 439-444).

Acknowledgments
This work is supported in part by Google through a CS Capacity Research Award.

