
Thematic Analysis of Students’ Reflections
on Pair Programming in CS1

Mehmet Celepkolu Kristy Elizabeth Boyer

Computer & Information Science & Engineering
University of Florida

Gainesville, Florida, USA 32611
mckolu@ufl.edu, keboyer@ufl.edu

ABSTRACT
Pair programming is a successful approach for improving student
performance, retention, and motivation toward computer science.
However, not all students benefit equally from this approach. An
open challenge for researchers is to develop a deep understanding
of the student experience in pair programming, particularly for
novices. This paper reports on a study of the cognitive, affective,
and social experiences of students in an introductory
programming course in which pair programming was utilized
throughout the term. Students reported their experience through
reflection essays written at the end of the semester. We analyzed
137 student reflection papers in a mixed-methods study. The
quantitative results show that overall, students have a positive
attitude toward pair programming. Looking more deeply at the
reflection essays, thematic analysis revealed themes centered
around cognitive, affective, and social dimensions. In the cognitive
dimension, students expressed the importance of exposure to
different ideas and developing deeper understanding. Affectively,
students reported that working with a partner reduced their
frustration and increased their confidence. Students also pointed
out the social benefits of forming friendships and helpful
connections. These results highlight the powerful benefits of pair
programming and point to ways in which this collaborative
approach could be adapted to better meet student needs. 1

ACM Reference format:

Mehmet Celepkolu and Kristy Elizabeth Boyer. 2018. Thematic Analysis of
Students’ Reflections on Pair Programming in CS1. In SIGCSE ’18: 49th
ACM Technical Symposium on Computer Science Education, Feb. 21–24, 2018,
Baltimore, MD, USA. ACM, NY, NY, USA,
6 pages. https://doi.org/10.1145/3159450.3159516

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
SIGCSE '18, February 21–24, 2018, Baltimore, MD, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02…$15.00
https://doi.org/10.1145/3159450.3159516

The high demand for computer science in a wide array of careers
has driven a tremendous increase in computer science course
enrollment at the postsecondary level. Every year, hundreds of
thousands of students enroll in programming courses.
Introductory courses are notoriously challenging, with a high
failure rate [14]. Programming is a challenging task that requires
high level thinking and abstraction that many students often
struggle to achieve.

Previous research has suggested that student collaboration in
introductory programming courses holds many benefits such as
exposure to different ideas and increased motivation [10, 36]. One
of the most prominent collaboration methods, pair programming,
has been shown to be effective for teaching programming in
introductory programming courses [9, 12]. In pair programming,
two students collaboratively construct code by taking on different
roles: The driver is responsible for writing the code and the
navigator helps in catching mistakes and providing feedback.

Despite its effectiveness on the whole, not all pair
programming interactions are successful [15]. Negative
experiences during collaboration can discourage students from
working in teams in the future [12]. Moreover, when a partnership
does not function successfully, the pair is less productive and may
fail to complete assignments [3,16]. This paper reports on a study
of student reflections on pair programming, as recorded on
students’ reflection essays at the end of the semester. These
students had gained substantial experience in pair programming,
completing all weekly lab assignments in pairs (with partner
assignments varying) over the course of fourteen weeks. This
analysis focuses on two research questions:

Research Question 1: How positive is student sentiment
toward pair programming?

Research Question 2: What are the cognitive, affective and
social factors that emerge from the students’ reflections about pair
programming?

We have examined quantitative and qualitative (thematic)
analysis of 137 students’ reflection essays. Quantitative results
showed that students have a positive attitude toward pair
programming overall. Qualitatively, students reported many topics
that affected their perception about pair programming such as
being exposed to different perspectives, learning from their
partners, becoming more efficient, and having less frustration.
Their reflections on challenges in pair programming are also
revealing, and suggest specific ways in which we may better
support diverse learners through collaborative problem solving in
our CS classes.

Paper Session: Pair Programming SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

771

https://doi.org/10.1145/3159450.3159516

2. RELATED WORK

Pair programming has become a well-known strategy for learning
programming, and has been shown as an effective method over
solo (individual) programming approaches [6,10,11,17,18]. Pair
programming provides a productive environment where students
produce higher quality code and typically enjoy the experience
more [4], display increased confidence and perform better on
exams [1]. Prior pair programming studies have focused on pairing
students based on many different factors, including learners’
achievement level, motivation, and gender [6,11]. There is
recognition that pair programming does not work equally well in
all instances and for all learners. This paper contributes to the
body of research on pair programming with a deep thematic
analysis of students’ reflections after a full semester of pair
programming in CS1.

3. METHODS

3.1 Participants

The data was collected from students who completed a CS1 course
in Spring 2017 at a large public university in the southeastern
United States. The class was taught in the Java programming
language and had a total enrollment of 375 students. Of these 375
enrolled students, 278 students voluntarily agreed to have their
data collected for research purposes. This consent was obtained at
the beginning of the term. Students did not receive course credit or
any incentive for consenting to data collection, and there was no
penalty for declining to data collection. 180 students consented to
have their data collected and we analyzed all the essays that
mention pair programming, for a total of 137. The authors of the
essays were 27 women (19.7%), 109 men (79.6%) and 1 unspecified
(0.7%). Race/ethnicities were White (45%), Hispanic (18%), Asian
(21%), Multiracial (11%), Black (2%), and Other (3%). Participants’
mean age was 19.1 (range: 18-27) and there were 82 Freshmen
(60.3%), 29 Sophomore (21.3%), 15 Junior (11%), 7 Senior (5.2%), and
3 graduate students (2.2%). The majority were from computing-
related majors: 35% Computer Science, 26% Computer
Engineering, 15% Other Engineering fields and 24% Others. 35% of
students reported having no programming experience at the
beginning of semester and 51% reported no prior Java
programming experience.

3.2 Procedure

During the semester, students attended three one-hour lectures
each week, had three exams, completed four projects and attended
fourteen lab meetings. There was one lecture section and eighteen
different lab sections with approximately 20 students each. In the
labs, students completed pair programming exercises and these
exercises comprised 20% of their overall course grade. Students
were free to leave the two-hour lab after they completed the lab
assignment, post-quiz, and post-survey. In the labs, each student
worked with either a randomly assigned or self-selected partner
depending on the lab structure of each week for the rest of
semester. Students were paired with a variety of different partners
throughout the semester. At the end of the course, students wrote
a reflection essay about their experiences. These essays were
announced at the start of the term and counted for two percent of

the course grade. Students were given the following high-level
prompt for the reflection paper.

The reflection essay prompt was intentionally left at a high
level, to “reflect on your learning process, your problem-solving
approaches, and the course content.” Thus, the essays cover a broad
variety of topics including the instructor, course design, exams,
projects, labs and teaching assistants. In this CS1 course, students
who participated in at least two hours of human subjects studies
received credit in lieu of writing the reflection essay, therefore not
all students submitted a reflection essay.

3.3 Data

Of the 375 students, 262 wrote a reflection essay. This analysis
examines essays from the 180 students who consented to have
their data collected. Of these 180 essays, 137 mention pair
programming. The essays that refer to pair programming as “peer
programming,” “partner programming” or “partnered
programming” were also included in analysis. While some
students discussed pair programming in 1-2 sentences, others
went into detail and spent almost a page on pair programming:
their positive and negative thoughts about the method, their
partners and other factors. The 137 excerpts discussing pair
programming were manually extracted by researchers who read
the essays. The average length of a pair-programming-related
excerpt was 165 words, with the longest being 861 and the shortest
being 21 words.

3.4 Sentiment Analysis Method

We manually labeled each of the excerpts for positive or negative
sentiment. Because labeling sentiment is a subjective task, we
employed a standard inter-rater reliability methodology: Two
human raters independently labeled the sentiment of each excerpt,
and then the extent to which the raters agreed was computed.
Sentiment was rated on a 5-point scale with 1 being the most
negative and 5 being the most positive. Researchers rated
sentiment based on the following criteria:
5: Completely positive. When the sentiment was completely
positive and there were no any negative comments/thoughts. For
example, “I feel that the pair programming model is a very good
practice to engage in. I found that it made me very comfortable
working with a partner, which is an important quality to carry into
the workplace. Also, explaining your code to your partner requires
you to really understand your code and thus pushed me to really
further understand concepts and techniques. Thus, I think lab was
extremely helpful and allowed me to ask more questions than
lecture.”

4: Mostly positive. Positive overall, but reporting some concerns
or dissatisfaction about some part of pair programming.

3: Neutral. When the student does not pick a side and reports that
he/she can work with or without pair programming.

2: Mostly negative. These students report that they would do
better without pair programming.

1: Completely negative. These excerpts report a high level of
frustration and dissatisfaction, and do not report any positive
sentiment. For example, “My biggest complaint with lab was the
pair programming. I HATED it. It was completely unproductive.”

Paper Session: Pair Programming SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

772

After the human raters scored all 137 extracted pair
programming sentiments, we compared the scores and calculated
the inter-rater reliability score. The ratings resulted in an inter-
rater reliability kappa score of 0.714 and a weighted kappa of
0.817, indicating substantial agreement [8].

3.5 Thematic Analysis Method

Our second research question involves the cognitive, affective and
social experiences that emerge from the themes in reflection
essays; thus, we employed a qualitative approach, specifically
thematic analysis. Thematic analysis has been recommended by
scholars as “a method for identifying, analyzing and reporting
patterns (themes) within data” [2]. Thematic analysis allows
researchers to explore phenomenology, which examines
individuals’ perceptions and understandings of a phenomenon (or
situation) through interviews, stories, or observations [5].

4. SENTIMENT ANALYSIS RESULTS

The majority of students (69%) reported positive attitudes (rated as
4 or 5) toward pair programming; other students reported negative
(rated as 1 and 2) or neutral (3) attitudes. The results showed that
high performing students report an overall neutral-to-positive
sentiment toward pair programming (N = 65; M = 3.53; SD = 1.38)
while other students display a positive sentiment overall (N = 72;
M= 4.14; SD = 1.15). The difference is significant (p < 0.01, Mann-

Whitney U).

5. THEMATIC ANALYSIS RESULTS

We used thematic analysis to explore student reflections on pair
programming through their essays. First, we performed thematic
coding on 62 randomly selected reflection excerpts, in which two
graduate student researchers coded the excerpts independently
and generated a total of 216 independent codes. For example,
“conflict between students”, “beneficial in programming”,
“learning new problem solving approaches” are some initial codes.

Then, two graduate student researchers met to discuss these
codes and collectively sorted them into themes and dimensions,
collapsing highly similar codes and creating a revised set of 82
codes. In the second round, they grouped thematically similar
codes from this revised set, ultimately identifying seven major
themes (e.g., “partner”) and nine minor themes (e.g., “lower level
partner”, “equal level partner”), for sixteen themes in total. Minor
themes would be “lower level partner”, “equal level partner” and
the major theme would be “partner”. A sample of the thematic
hierarchy is presented in Table 1. As per standard practice in this
methodology, two researchers collaboratively extracted these
themes. The themes were not selected based on importance or the
frequency with which they were being mentioned by students.
Instead, they represent different dimensions of the factors
involved in pair programming activities.

After finalizing the categorization of the major themes, we
sorted the themes into broader conceptual domains: cognitive,
affective and social. In this paper, we focus on the most prominent
major themes in each domain by discussing the related sub-themes
and codes. We also present positive and negative reflections in
student quotes.

Table 1. A portion of the thematic analysis hierarchy

Revised Codes Themes Dimensions

Comparing my ideas with a
fellow peer Exposure to

different ideas

Cognitive

Observing others’ solutions

Learn different working
styles

Reduced workload

Efficiency Faster Completion

Smoother Problem Solving

Better Problem Solving

Deeper
Learning

Mastering skills

Refine knowledge

Extend knowledge

Working with strangers

Social growth

Social

Leaving your comfort zone

Meet with new people

Bad when partners rush

Partner Bad when partners don’t
explain

Enjoyment
Satisfaction

Affective Motivation

Partner Roles Logistics

5.1 Cognitive Dimension

The themes in the Cognitive domain are those involved in
acquisition and understanding of knowledge, decision making and
problem solving process [13]. The reflection essays revealed
several themes of, “Exposure to new ideas”, “Deeper Learning”,
and “Efficiency” (with sublevels “Reduced Workload”, “Smoother
Problem Solving” and “Faster Completion”). We also present how
students with different achievement levels express different
themes in pair programming.
Exposure to new ideas: This theme refers to how students
perceive exchanging ideas with other students in pair
programming activities. Students often mentioned that pair
programming helped them to be exposed to different perspectives
during the problem solving process.

“One of these benefits was getting multiple perspectives on
problems. Sometimes I would not know how to approach a
problem or I would not know if there was a better way to
solve a problem. When this happened I sure was glad that I
had a partner to program with.”

-Male CS major who achieved an A in the course
However, some students indicated that they had conflicts during
“exchanging ideas and” with other students as they encountered
communication difficulties. For example, the following quote
shows how the conflicts made the process cumbersome for this
student when their partner did not agree on the solution:

Paper Session: Pair Programming SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

773

“… trying to connect to thought processes in two different
people in a way that can create one application was an
absolute nightmare for me. Often my partner and I would
come up with conflicting solutions on how to tackle a
problem.” –Male CE major with an A in the course

Deeper Learning: This theme refers to how students evaluate
their perceived learning outcomes in pair programming. Most
students mentioned that trying to explain the concepts to their
peers helped them better understand the content.

“Also, explaining your code to your partner requires you to
really understand your code and thus pushed me to really
further understand concepts and techniques.”
–Male CE major who achieved a B+ in the course

However, some students explained that they failed to use the same
knowledge when they later worked alone.

“During the first few weeks of lab this proved to be an
effective method; however, I found when I was working on
code myself, while I understood the majority of the material I
was just not able to piece everything together and
consistently made simple errors in my code that I really had
no idea at the time how to solve.”
– Male, non-CS major who earned a D+ in the course

Efficiency: This theme refers to students’ perceptions of the
extent to which pair programming helped them to understand the
concepts more easily, finish the assignment faster than they
anticipated, and reduce their workload. In pair programming,
students work with a partner, which is expected to reduce the
workload. Also, students have a second eye examining the code,
catching mistakes and providing feedback; thus, the majority of
students pointed out how working together reduced their
workload, and helped them work more efficiently:

“I found that along with the combined set of brains that
working with a partner offers, a combined set of hands can
further help to reduce the work load, increase efficiency, and
help develop overall problem solving skills.” –Male, CS major
who achieved an A in the course.

Some students reported a smoother problem-solving process
thanks to their partner’s guidance:

“Pair programming engrained the techniques in an efficient
way, unlike last semester where I struggled on several of the
assignments because the project’s level of difficulty
outweighed my programming knowledge.”

–Female non-CS major who earned an A- in the course

On the other hand, some students pointed out that pair
programming actually increased their workload and made them
slow down due to the free-riding problem:

“But sometimes this person who didn’t know anything was
not motivated to learn anything, and just wanted it done. So
basically, I would be doing the whole lab (which is fine
because I like working alone), but I would ALSO be spending
my time teaching this person and explaining what I’m doing
because we’re supposed to be ‘working together’, and it would
just be a complete waste of time.”
–Female CS major who achieved an A in the course

In addition, some students mentioned that time was an important
factor in their learning process. When there was sufficient time,
students stated that they were more willing to help their partner,
discuss the problem and try different approaches.

“It is difficult to hand the reigns to a partner that just does all
the work or doesn’t know anything at all. It would not be a
problem if lab was not timed but unfortunately it is so if one
partner wasn’t following along then that meant we would
most likely fall behind.” –Female CS major who earned a
C+ in the course

“Being put together with a partner who also really wanted to
learn and who wasn’t in a hurry felt so relieving! I hate
feeling like I have to try to be as clever and quick as possible
so I’m not holding my partner back.” –Female non-CS major
who earned an A in the course

5.2 Affective Dimension

The themes in the Affective dimension are those that involve
feelings or emotions toward pair programming experiences. In this
section, we focus on the “Satisfaction” theme with Enjoyment and
Motivation sublevels.

Satisfaction: This theme refers to the fulfillment of students’
expectations, their motivation to pursue their goals, their reduced
frustration and their enjoyment derived from pair programming.
Most students reported high enjoyment from pair programming
and referred to the activities as motivating, rewarding, engaging,
less frustrating and imposing less pressure on them.

“Pair programming helped me get through the lab and learn
from my partner instead of just sitting there frustrated and
staring at my code, too afraid to ask for help.” – Female CS
major who earned a B in the course

However, some students reported strong negative feelings toward
pair programming:

“I really did not enjoy the peer programming part of the lab. I
feel that peer programming overall slowed down the work,
created annoyance between both partners, and did not
improve understanding.” – Male CS major who achieved an
B in the course

Logistics: This theme refers to the logistical issues derived from
pair programming that affected students’ affective state. Some
students reported that working on the same computer with
another student can be problematic.

“The biggest question I had for this when it was first
introduced during class was how do two people code at the
same time. While the solution to that was the driver-
navigator dynamic, it seemed pointless in the end. The
navigator might have just spent their entire turn sitting
there. I know I had my share of moments where I just sat
there watching my partner code during lab.” – Female non-
CS major who achieved an A- in the course

Paper Session: Pair Programming SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

774

5.3 Social Dimension

The themes in the Social Dimension involve students’ interactions
with their partners in the pair programming environment. In this
section, we focus on “Social Growth” and “Partner” themes.

Social growth: This refers to students’ perception of how pair
programming activities helped them to step out of their comfort
zone to make new friends, express themselves to more people,
enable them to work with strangers, interact with their classmates
and make study groups for course projects:

“Another advantage of peer programming [sic] was leaving
my comfort zone by meeting new people. Usually I am a very
introverted person. The lab in this class forced me to be more
social and express myself to more people. I think that this
made me a better problem solver and a better
communicator.” -Male CS major who achieved an A in the
course

Partner: This theme refers to students’ thoughts about their
actual partners, their ideal partner, and the pair assignment
procedures. Partnership is one of the core components of pair
programming and it can have a big impact on the success of
collaboration. While some students were in favor of random
assignment, some students expressed a desire to select their own
partner to avoid being paired with a much lower-achieving
student.

“… choosing partners for us was irritating to say the least. As
someone who knew what they were doing (relatively), during
every randomly partnered class I was either doing the
problem myself and then explaining my work or forced to sit
irritated that my partner could not comprehend the problem.
Choosing our own partners was a welcome change as I was
able to work with someone of even skill level who was able to
do their own work and follow mine.” – Male non-CS major
with a B+ in the course

Pair programming literature often reports on conflicts between
students. Previous studies have shown that when students work
with a partner with a different knowledge level, the information
usually flows from the higher-achieving student to the lower-
achieving student [9], and higher-performing students usually
dominate the problem solving activity.

 “… the people I got who were better skilled than me just took
over the whole thing and didn’t even bother trying to explain
to me what they were doing.” – Female CS major who
earned an A in the course

“For the first few pair programming sessions I was assigned a
partner with very little programming experience, which I feel
slowed down the process and distracted me from thinking
about the project.” – Female CS major who earned an A in
the course

6. DISCUSSION
These student reflections point to several areas of the student
experience that warrant attention. First, one student pointed out
the frustration that can stem from partners arriving at

“conflicting” solutions. While this is a natural way for a student to
experience a difference in problem solving approaches, it is
important to help students understand that two different
viewpoints will actually help to produce a stronger product if the
collaborators invest the time to talk through the relative merits of
their approaches and determine which one (or a combination) is
best suited for the task at hand.

Second, some students felt that when they were asked to
program solo (such as on projects) that the transition away from
pair programming was difficult. Providing appropriate on-demand
support from teaching assistants or professors is a crucial step to
support students in becoming competent solo programmers,
though a plethora of empirical results have shown that pair
programming does not inhibit solo programming performance.

Finally, one student reflected on experiencing irritation when
working with a less knowledgeable partner. This sentiment is
perhaps one of the most pervasive that we have seen expressed.
There is no simple way to address this negative student comment.
If we pair students with high skill together, it would mitigate this
problem greatly but would create other problems such as failing to
build the teamwork skill of working in a diverse team. On the
other hand, if we can make a strong case for the importance of
peer tutoring when a mismatch in skill is present, and provide
incentives and proper training, we may be able to channel what
could have been frustration into a sense of achievement that is
beneficial to both students.

Supporting diverse learners is of paramount importance as
we consider the student experience in our computer science
classes. A full discussion from a broadening-participation
viewpoint is beyond the scope of this paper, but as one example,
we observe a phenomenon often noted between female and male
students, when the difference in confidence is not commensurate
with the students’ achievement in the course.

In the labs, I was assigned to a partner who was way more
advance in this stuff than I was. He did everything and made
me feel so moronic. […] I read the chapters before coming to
lab, but this stuff just didn’t click.” –Female non-CS major
who earned an A- in the class

“… my partners were fresh, first-time programmers, and it
was agonizing. They barely knew the syntax or how a
method is structured and it would turn into me guiding them,
line-by-line, what to type. At ten o’clock in the morning I’m
not in the mood to hand-hold someone for two hours through
something they should already know.” – Male CE major
who earned a A in the course

Limitations and Treat to Validity. During the analysis process,
we focused on three dimensions, cognitive, affective and social,
which are widely studied and agreed upon as important aspects of
programming. We made a simplifying assumption and placed each
theme into one dimension, but some themes overlap categories.
For example, exposure to different ideas is a socio-cognitive
construct. Another limitation which is often pointed out in
qualitative research is the subjective nature of the categorizations.
However, the analysis presented here makes no claim that the

Paper Session: Pair Programming SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

775

categories are generalizable nor that the student experiences
described here are shared by all (or even most) students with the
same characteristics. The key point is that these essays and the
themes discussed therein represent experiences that students
actually had, and therefore they are worthy of our attention as we
aim to serve all students well in our CS classes. Finally, roughly
25% of the students did not mention pair programming in their
reflection because we intentionally left the reflection essay prompt
high-level so students could focus on what they felt was
important. However, this approach may have skewed the
satisfaction results.

7. CONCLUSION

Our overarching goal for this study was to deepen understanding
of why some pair programming collaborations are successful and
others unsuccessful. We examined how different level students’
attitudes differ towards pair programming and analyzed the
emergent themes from students’ reflections. We have presented
quantitative and qualitative (thematic) analysis of 137 students’
reflection essays. We focused on three dimensions of these
reflections— cognitive, affective and social— and examined the
related major themes. The quantitative results show that students
have a positive attitude toward pair programming overall and that
high-achieving students report significantly less positive
sentiment and fewer perceived benefits compared to other
students.

Qualitatively, students with different knowledge levels
reported enjoyment and frustration about many different topics. In
the cognitive dimension, most students expressed that pair
programming helped them to be exposed to different perspectives,
learn from their partners, develop deeper understanding by
discussing the problem, and become more efficient by reducing the
workload and finding more efficient solutions. Affectively,
students described the pair programming activities as being
motivating, rewarding, engaging, less frustrating, and putting less
pressure on them than solo activities. Socially, pair programming
contributed to social growth by helping students step out their
comfort zone to make new friends, express themselves to more
people, enable them to work with strangers, interact with their
classmates and make study groups for course projects. Students
also reported that their partner can define the success of the pair
programming activity: too much difference in knowledge level
demotivates high-achieving students by increasing their workload,
distracting them from the activity and making them slower, while
low-achieving students cannot keep up with the high-achieving
students’ pace and feel marginalized in the problem-solving
activity. This may be why, with few exceptions, most students
preferred to work with a similarly skilled partner.

Considering these three dimensions of pair programming, we
begin to see there are many unresolved issues that students face
during pair programming. The outcomes from this study can help
instructors to increase enjoyment and improve learning outcomes
in pair programming. For future studies, combining reflection
essay data with more data sources, such as video recordings and
students’ programming outputs can uncover many other

important issues and help computer science educators develop a
deeper understanding of students’ concerns and interactions in
pair programming activities.

8. ACKNOWLEDGMENTS

The authors wish to thank the members of the LearnDialogue
group at the University of Florida for their helpful input, especially
Jennifer Tsan and Lydia Pezzullo for their invaluable help which
made this work possible. This work is supported in part by Google
through a CS Capacity Research Award and by the National
Science Foundation through grant CNS-1622438. Any opinions,
findings, conclusions, or recommendations expressed in this report
are those of the authors, and do not necessarily represent the
official views, opinions, or policy of the National Science
Foundation.

REFERENCES
[1] G. Braught, T. Wahls, and L. M. Eby. 2011. The Case for Pair Programming in the

Computer Science Classroom. ACM Transactions on Computing Education 11, 1:
1–21.

[2] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology 3, 2: 77–101.

[3] Joseph Chao and Gulgunes Atli. 2006. Critical Personality Traits in Successful
Pair Programming. In AGILE 2006 (AGILE’06), 89–93.

[4] Alistair Cockburn and Laurie Williams. 2000. The Costs and Benefits of Pair
Programming. Extreme Programming and Flexible Processes in Software
Engineering XP2000: 223-247.

[5] Lynne M. Connelly. 2010. What is phenomenology? MedSurg Nursing 19, 2: 127–
129.

[6] Timothy H. DeClue. 2003. Pair programming and pair trading: effects on learning
and motivation in a CS2 course. Journal of Computing Sciences in Colleges 18, 5:
49–56.

[7] T. Dyba, E. Arisholm, D. Sjöberg, J. E. Hannay, and F. Shull. 2007. Are two heads
better than one? On the efectiveness of pair programming. IEEE Software 6: 12–
15.

[8] J. Richard Landis and Gary G. Koch. 1977. The measurement of observer
agreement for categorical data. biometrics.

[9] Sarah J. McCarthey and Susan McMahon. 1992. From convention to invention:
Three approaches to peer interactions during writing. Interaction in cooperative
groups: 17-35

[10] C. Mcdowell, B. Hanks, and L. Werner. 2003. Experimenting with Pair
Programming in the Classroom. In Proceedings of the 8th Annual Conference on
Innovation and Technology in Computer Science Education, 60–64.

[11] C. Mcdowell, L. Werner, H. E. Bullock, and J. Fernald. 2003. The impact of pair
programming on student performance, perception and persistence. Proceedings
of the 25th International Conference on Software Engineering: 602–607.

[12] J. L. Schultz, J. R. Wilson, and K. C. Hess. 2010. Team-based classroom pedagogy
reframed: The student perspective. American Journal of Business Education.

[13] J. Sweller, P. Ayres, and S. Kalyuga. 2011. Cognitive load theory.

[14] Christopher Watson and Frederick W. B. Li. 2014. Failure rates in introductory
programming revisited. In Proceedings of the 2014 conference on Innovation &
technology in computer science education - ITiCSE ’14, 39–44.

[15] Jon M. Werner and Scott W. Lester. 2001. Applying a team effectiveness
framework to the performance of student case teams. Human Resource
Development.

[16] L. L. Werner, B. Hanks, C. McDowell. 2004. Pair-Programming Helps Female
Computer Science Students. ACM Journal of Educational Resources in
Computing 4, 1.

[17] Laurie Williams and Richard L. Upchurch. 2001. In Support of Student Pair-
Programming. In Proceedings of the thirty-second SIGCSE technical symposium
on Computer Science Education, 327–331.

[18] B. Zhong, Q. Wang, and J. Chen. 2016. The impact of social factors on pair
programming in a primary school. Computers in Human Behavior 64: 423–431.

Paper Session: Pair Programming SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

776

