
The Impact of Instructor Initiative on Student Learning:
A Tutoring Study

Kristy Elizabeth Boyera*, Robert Phillipsab,
Michael D. Wallisab, Mladen A. Vouka, James C. Lestera

a Department of Computer Science, North Carolina State University, Raleigh, NC, USA
bApplied Research Associates, Inc. Raleigh, NC, USA

*keboyer@ncsu.edu

ABSTRACT
In the quest to find instructional approaches that benefit student
learning, engagement, and retention, evidence suggests providing
students with hands-on practice is a worthwhile use of class time.
This paper presents results from an exploratory study of two
different instructional approaches that were encountered in a
study of experienced human tutors working with novice
computing students engaged in a programming exercise. No
difference in average learning gains was found between a
moderate approach, in which students were given control of
problem solving nearly half the time, and a proactive approach in
which the tutor took initiative nearly three-fourths of the time.
Implications of this finding for fine-grained instructional strategy,
as well as for broader classroom management decisions, are
discussed. This paper also makes the case for the value of one-
on-one tutoring studies as an exploratory research methodology
for the comparative evaluation of computer science teaching
strategies.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Design, Human Factors

Keywords
Computing education research, tutoring, research study, active
learning, problem-solving, teaching strategies

1. INTRODUCTION
Computing educators have a plethora of instructional approaches
at their disposal. For a given course, they may choose among
textbooks, presentation formats, programming languages, and
communication platforms. Beyond these instructional choices
that often persist throughout the duration of a course lie the finer-
grained decisions of teaching. Such decisions include the
particular approach (e.g., lecture, discovery learning) that will be
used to teach course material.

It is helpful to have empirical results that highlight the differential
effects of specific strategies in particular situations. Because it
has been established that active learning is a valuable classroom
approach that can enhance student learning and motivation [6],
one important teaching scenario for computing educators is
hands-on practice time provided to students in a classroom
setting. Evidence suggests that introducing an active component
to a computing course may benefit students, particularly with
regard to engagement and retention [3].

As with most instructional approaches, in-class practice activities
involve pedagogical decisions such as when to intervene for
students who appear to be struggling, and how to choose the
specificity and elaborateness of answers to student questions.
This paper presents the results of an empirical study that explores
teaching strategies for helping students solve introductory
programming problems.

One-on-one instruction in computer science has been recognized
as a technique in which effective teaching strategies can be
applied [10]. This paper reports on a study that investigates the
impact of two different instructional approaches that were
employed in a controlled study of experienced human tutors
working with novice computer science students who were
engaged in a programming exercise. The two instructional
approaches differed with respect to the level of control and
direction, or initiative [5], that the tutor exerted during the
problem-solving activities. It was found that for the two levels of
instructor initiative studied here (73% and 55% instructor
initiative, corresponding to 27% and 45% student initiative,
respectively), there was no significant difference in student
learning gains. In addition to contributing to our understanding of
instructional techniques for guiding problem solving, the findings
highlight important future work on classroom management
techniques for facilitating active learning in computer science.

2. TUTORING STUDY
This paper describes an exploratory research study conducted
during a university CS1 course. In the study, each student worked
on a programming exercise while interacting with a dedicated
human tutor via remote collaboration software.

2.1 Participants
Study participants consisted of 61 students enrolled in a university
CS1 course. Students were obtained on a volunteer basis through
in-person visits by a researcher to course sections taught by three
different instructors. Students earned a small amount of extra
course credit for participating in the study. An alternate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE'09, March 3-7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03...$5.00.
tice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE ‘09 M h 2009 Ch tt T USA

assignment for extra credit was offered to students who did not
participate in a tutoring session.

2.2 Programming Exercise
Each student in the experiment completed a programming
exercise that focused on one-dimensional arrays, for loop
constructs, and parameter passing. These were all timely
concepts for participants with respect to upcoming programming
projects and exams in the class. The programming problem was
scaffolded with a fully-implemented graphical component that
allowed students to test and see the results of their work visually.
The context of the problem, which consisted of analyzing
emergency call response times for a county that was considering
replacing their fleet of ambulances, was designed with social
relevance in mind [7]. The material required for the programming
exercise had been presented in the students’ class lectures.

2.3 Treatment Groups
Students were assigned randomly to one of the two tutors. These
tutors, one female graduate student and one male undergraduate
student, were both experienced in tutoring students in
introductory programming. The two tutors were chosen because
of their demonstrated effectiveness in two prior pilot studies using
numerous experienced tutors. No instructional strategies were
prescribed for the tutors. As discussed in Section 3, analysis of
the tutoring logs revealed the two tutors chose significantly
different teaching strategies while working with the students.

2.4 Logistics
During the course of problem solving, the student constructed the
solution in the programming interface while the tutor observed the
student’s actions remotely in real time. Tutors were not allowed
to edit the student’s programming code. The tutor and student
engaged in dialogue through a textual chat message interface as
part of a software tool designed to facilitate remote collaboration
[2]. Tutors were not made aware of any student characteristics
such as achievement level in the course, gender, or age.
Reciprocally, no information about the tutor’s identity was
provided to the student.
Students completed a pre-survey and pretest upon arrival to the
study, and were then shown a brief instructional video containing
an orientation to the software. After beginning work on the
programming problem, the students were allowed to work until
completion except for one subject who was stopped due to time
constraints. This subject was omitted from the analyses presented
here, as were three subjects whose logs were incomplete due to
technical difficulties. At the end of the tutoring session, students
completed a posttest with items identical to those in the pretest.
Both the pretest and posttest consisted of free-response questions
for which students wrote Java code using the same concepts that
were relevant to the programming exercise. Time to complete
this free-response test ranged from 8 to 20 minutes. The pretest
and posttest scores are reported as percentages correct out of the
total possible points on each test. It should be noted that although
there was likely a test-retest effect present from administering the
same test before and after the instruction, this effect is present in

both groups and therefore does not have a bearing on the
differential analysis presented here. 1

3. ANALYSIS AND RESULTS
Over the course of the tutoring sessions, all programming actions
and typed dialogue were logged to a database. Because no
pedagogical strategies had been prescribed, a preliminary
qualitative analysis of the logs was conducted to search for
strategies that appeared to differ systematically between tutors.
The qualitative analysis led to the hypothesis that the tutors
differed significantly in the percentage of time the student was
allowed to direct and control the problem-solving task. In
dialogue analysis, control of the dialogue and problem-solving is
referred to as initiative [5]. The dialogue data described here is of
a mixed-initiative nature because both the student and the tutor are
able to take and relinquish control during the tutoring session,
within limits (i.e., the software interface permits the tutor only to
view, not edit, the solution to the programming problem).
In order to explore whether there was a significant difference in
the teaching strategies with respect to initiative, the analysis
employs a standard corpus annotation approach: an annotation
scheme was applied manually to the data, and quantitative
methods were used to discover whether statistically significant
differences were present in the resulting relative frequencies. The
remainder of this section describes the initiative annotation tags,
provides example dialogue excerpts, and presents statistical
results.

3.1 Annotation for Tutor Approach
In order to annotate the sessions as to whether the tutor or the
student was leading the problem solving at a given time, the
analysis employed two tags: Student-Initiative and Tutor-
Initiative. These tags were applied to groups of dialogue
messages as well as student programming actions.
Student-Initiative Mode. In Student-Initiative mode the student
maintains control and direction over the problem-solving effort.
Student-Initiative mode is characterized by one or more of the
following attributes: 1) the student states his/her plan and
(optionally) asks the tutor for feedback, 2) the student reads the
problem description or constructs a portion of the solution
independently (as indicated by no dialogue exchanged while the
student is conducting these problem-solving activities), or 3) the
student asks content-based questions (e.g., “I should start this
index at 0, right?”) as opposed to content-free questions (e.g.,
“What do I do now?”).
Tutor-Initiative Mode. In Tutor-Initiative mode the tutor directs
the problem solving effort. Only the student can construct
program code in the problem-solving window, but the tutor can
control and direct the student’s work through dialogue strategy
choices. Characteristics of the Tutor-Initiative mode include: 1)
the tutor offers unsolicited advice or correction, 2) the tutor
lectures on a concept, 3) the tutor explicitly suggests the next step
in problem solving, or 4) the tutor poses questions to the student.
To illustrate the different tutoring modes, consider two dialogue
excerpts. The first excerpt, from the moderate tutor, illustrates

1 Identical pretest and posttests were chosen over isomorphic

versions to avoid a mismatch in difficulty that might have
inflated or masked learning results.

Student-Initiative mode (Table 1). In this excerpt, the student
asks a content-based question indicating he knows the problem
lies in a return statement. The tutor provides an answer, the
student acknowledges, and finally the student spends five minutes
coding part of the problem solution. Lengthy periods of
independent student work are common in Student-Initiative mode.
The second excerpt, from the proactive tutor, illustrates Tutor-
Initiative mode (Table 2). In this excerpt, the tutor provides
unsolicited advice and asks questions of the student. The student
spends a brief time repairing the problem solution, and the tutor
once more provides unsolicited feedback. As illustrated in this
excerpt, brief periods of student work interspersed with frequent
dialogue are common in Tutor-Initiative mode.

Table 1: Excerpt of Student-Initiative mode2

Student: What am I not typing right in the return statement?
Tutor: You only need to return the identifier.
Tutor: In other words, you just need to return newtimes
Student: Ok.

[student works on solution independently for five minutes]

Table 2: Excerpt of Tutor-Initiative mode

Tutor:

Hmm, that doesn’t look quite right.
Tutor: Do you see the projected array output?
Student: Yes.
Tutor: It looks like it’s only getting the first value…

Tutor: So your loop must be stopping before it’s done with its
work.

Tutor: Do you see what might be causing that?
[…tutor-led conversation continues…]

Tutor: But it’s coming out 1.0 instead of 4.3.

Tutor: Anything else look wrong on the graph, compared to
the instructions?

Student: The second bar is not right

Tutor: I think fixing the length might be the only thing you
need to change.
[student works on solution for ten seconds]

Tutor: Much better.
Student: Yeah!!
Tutor: =)

3.2 Proportion of Tutor-Led Problem Solving
A total of 61 tutoring sessions were conducted. Out of these, a
subset of 30 (15 randomly selected from each treatment group)
were annotated for initiative. From the time stamps logged on
each textual dialogue message and problem-solving action,
boundaries between Student-Initiative and Tutor-Initiative mode
were identifiable as points in time. Total elapsed time in each
mode was calculated for each session. This calculation revealed

2 In both excerpts, capitalization and punctuation have been added

to textual dialogue messages for readability.

that the two tutors did in fact take significantly different levels of
initiative. One tutor, whom we refer to as the proactive tutor,
directed the problem solving an average of 73% of the time. The
second tutor, referred to here as the moderate tutor, took initiative
only 55% of the time on average (Figure 1). This difference in
means is statistically significant with a two-sample t-test using
pooled variance (p=0.029): the moderate tutor allowed students
to take initiative significantly more often than the proactive tutor.

Figure 1: Comparison of Tutor Initiative

3.3 Random Distribution of Students
One possible explanation for the difference in tutor approach
might be that there was a systematic difference in the groups of
students assigned to each tutor. For instance, if the proactive tutor
had been assigned weaker students than the moderate tutor, this
could explain not only the need for more control on the part of the
tutor, but also a lack of discrepancy in learning outcomes.
However, there is no evidence of a systematic difference in the
samples of students tutored. Initially, students were randomly
assigned to one of the two tutors. To confirm that no systematic
difference in student preparedness was created, we conducted a
post hoc analysis of pretest scores (Figure 2). The mean pretest
score for students assigned to the moderate tutor was 79.5%,
compared with a mean pretest score of 78.9% for students
assigned to the proactive tutor. A t-test with pooled variance
indicates there is no evidence of a statistical difference in the
pretest scores (p=0.930).

3.4 Equivalence of Learning Gains
Learning gain is calculated as the difference between posttest
score and pretest score (in terms of percent correct). Despite a
significant difference in the mean level of tutor initiative between
treatment groups, there was no significant difference between the
mean learning gains for the two groups (Figure 3). Students who
worked with the moderate tutor had an average learning gain of
6.9 percentage points. Students who worked with the proactive
tutor had an average 6.0 percentage point learning gain. This
difference is not statistically significant (p=0.796).

Figure 2: Comparison of Student Pretest Score by Tutor

Figure 3: Student Learning Gains by Tutor

4. DISCUSSION
It was found that there was no significant difference in student
learning gains between proactive instruction, in which the tutor
retained control and direction of problem solving 73% of the time,
compared to moderate instruction in which the tutor led the
problem solving only 55% of the time. The findings of this
exploratory study have important implications at both a fine-
grained teaching-strategy level and a broader classroom-
management level. This section discusses those implications and
addresses limitations of the study.

4.1 Tutoring Methodology
While it is the case that most college and university-level
computing education takes place in group instruction settings,
studying one-on-one tutoring is a valuable research methodology
for exploring the effects of different instructional strategies. First,
tutoring studies permit experimental control: by collecting data
involving one instructor and one student, investigators can
achieve control beyond what is easily attained if data is collected
at the classroom level only (e.g., when instructors vary their

teaching methods between classes and then compare aggregate
data by class to discern the differential impact of the teaching
methods). Second, because tutor-student interactions can be
readily recorded using basic logging techniques, tutoring studies
facilitate data capture. Finally, because each learner is provided
with what the tutor deems the most suitable instructional
approach, one-on-one instruction permits greater coverage of
teaching strategies. In addition, a greater number of different
instructors can be observed teaching the same material compared
to what would be feasible in classroom implementation.
Particularly in exploratory studies where it may not be necessary
to have classroom-sized samples of individual students for each
tutor, a one-on-one research approach can reveal trends and
patterns worthy of future investigation.

By aggregating tutoring data based on certain factors (e.g.,
instructional technique), we can discover differential implications
of the factor levels for the entire sample of students, which can be
extrapolated to the student population as a whole. This type of
inference is used regularly in whole-class educational research,
and many issues (e.g., representativeness of the student sample,
hidden individual differences) are shared between whole-class
and one-on-one research situations. In both cases, such
confounding factors are important to address.

4.2 Threats to Validity
One artifact of the design of this exploratory study is that because
different tutors were used, it is plausible that the difference in
instructor initiative did have an effect on student learning, but that
unseen differences between tutors offset the impact of the
different levels of initiative. This potential threat to validity is
necessary in such an exploratory study because had only a single
tutor been utilized, the study could not have revealed the
systematic differences in the individual tutors’ natural strategies.
A more controlled design can be implemented in subsequent
confirmatory experiments.

A second possible confound pertains to making extrapolations to
group teaching strategies based on tutoring data. One-on-one
instruction provides highly contextualized, individualized
assistance. This constant source of effective help is part of the
power of human tutoring, and is at least partially responsible for
the dramatic learning results achieved in some tutoring studies
that compare one-on-one instruction to group instruction [1]. For
this reason, among others, it is not reasonable to suggest replacing
whole-class research studies with one-on-one tutoring studies.
However, because of the control, capture, and coverage that are
readily achievable in tutoring studies, we can use this approach to
identify important patterns that warrant whole-class studies. The
results reported here are an example of just such a pattern.

4.3 Open Questions
This study of initiative raises an important hypothesis worthy of
future investigation. With the proactive tutor, the student was in
control of the problem solving an average of 27% of the time.
With the moderate tutor, the student directed the problem solving
significantly more often: 45% of the time, with no significant
increases in learning gains observed. This result, in which higher
student initiative did not translate into higher learning gains, can
be contextualized with other research in which student initiative is
allowed to vary. For example, in the very different context of pair
programming (e.g., [8, 9]), it has been found that when students

complete projects in pairs (presumably dividing the possible
100% initiative between both students since only one student is in
control at a given time), learning gains over the semester are as
good or better than students who completed the projects
individually (close to 100% initiative on the part of the student).
These findings suggest that the level of student initiative has an
interaction effect with other aspects of the instructional setting,
and that further investigation is warranted to fully understand
these phenomena.
In a large tutoring study with the investigation of learning in
multiple disciplines, results suggest the effectiveness of tutoring
lies not solely with a tutor’s skill in what to say and when, nor
solely in the student’s active construction of knowledge, but
rather with the interaction between the two parties [4].
Interactivity as a catalyst for student learning has also been
studied by proponents of active learning [6], who find a strictly
lecture format (presumably close to 0% student initiative) is not
as desirable as classroom approaches that do allow some level of
student initiative. Our results suggest there may be a “plateau”
effect of sorts, in which providing room for a modest level of
student initiative could have appreciable benefits for student
learning. This hypothesis can be further investigated using
tutoring experiments as well as whole-class comparison studies.
A final noteworthy benefit of using one-on-one instruction as a
research methodology for the comparative evaluation of teaching
strategies is that tutoring is known to increase the skill of the
tutors as well as the students [4]. Utilizing tutoring as a
pedagogical training ground for new computer science teachers is
an active area of application and research [10]. By capturing
multiple tutoring sessions, it may be possible to investigate how
the tutor’s pedagogical style changes over time and the
corresponding impact on student learning.

5. CONCLUSIONS & FUTURE WORK
Hands-on practice in class is a promising instructional approach
in which empirical results such as those presented here can help
the computing education community understand the impact of
alternative instructional approaches. One-on-one human tutoring
is a viable exploratory research approach for investigating
teaching strategies because it readily lends itself to control of
confounding factors, capture of the complete instructional
interaction, and coverage of a variety of instructors and teaching
strategies. In the study reported here, it was found that a
moderate approach, in which the tutor holds the initiative just
over half the time, yielded learning gains comparable to a
proactive approach in which the tutor directed the problem
solving nearly three-fourths of the time.
Conducting a confirmatory tutoring experiment, as well as whole-
class research studies with prescribed levels of instructor
initiative, are promising directions for future work. These
investigations can shed light on the fine-grained cognitive and
affective processes at work as students acquire computing
concepts and skills.

6. ACKNOWLEDGMENTS
Thanks to Carolyn Miller for valuable feedback. This work is
supported in part by the NC State University Department of
Computer Science along with the National Science Foundation
through Grants REC-0632450 and IIS-0812291, a Graduate

Research Fellowship, and the STARS Alliance Grant CNS-
0540523. Any opinions, findings, conclusions, or
recommendations expressed in this report are those of the
participants, and do not necessarily represent the official views,
opinions, or policy of the National Science Foundation.

7. REFERENCES
[1] Bloom, B. S. The 2 Sigma Problem: The Search for Methods

of Group Instruction as Effective as One-to-One Tutoring.
Educational Researcher, 13, 6 (1984), 4-16.

[2] Boyer, K. E., Dwight, A. A., Fondren, R. T., Vouk, M. A.
and Lester, J. C. A development environment for distributed
synchronous collaborative programming. In Proceedings of
the 13th Annual Conference on Innovation and Technology
in Computer Science Education. (Madrid, Spain, June 30 -
July 2, 2008). ACM Press New York, NY, 2008, 158-162.

[3] Boyer, K. E., Dwight, R. S., Miller, C. S., Raubenheimer, C.
D., Stallmann, M. F. and Vouk, M. A. A case for smaller
class size with integrated lab for introductory computer
science. In Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education. (Covington,
Kentucky, March 7-10, 2007). ACM Press New York, NY,
2007, 341-345.

[4] Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T. and
Hausmann, R. G. Learning from human tutoring. Cognitive
Science, 25, 4 (2001), 471-533.

[5] Core, M. G., Moore, J. D. and Zinn, C. The role of initiative
in tutorial dialogue. In Proceedings of the 10th Conference
of the European Chapter of the Association for
Computational Linguistics. (Budapest, Hungary).
Association for Computational Linguistics, Morristown, NJ,
2003, 67-74.

[6] Felder, R. M. and Brent, R. Learning by Doing. Chemical
Engineering Education, 37, 4 (2003), 282-283.

[7] Layman, L., Williams, L. and Slaten, K. Note to self: make
assignments meaningful. In Proceedings of the 38th
SIGCSE Technical Symposium on Computer Science
Education. (Covington, Kentucky, March 7-10, 2007). ACM
Press New York, NY, 2007, 459-463.

[8] McDowell, C., Werner, L., Bullock, H. and Fernald, J. The
effects of pair programming on performance in an
introductory programming course. In Proceedings of the
33rd SIGCSE Technical Symposium on Computer Science
Education. (Covington, KY). 2002, 38-42.

[9] Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K.,
Miller, C. and Balik, S. Improving the CS1 experience with
pair programming. In Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education.
(Reno, Nevada, February 19-23, 2003). ACM Press, New
York, NY, 2003, 359-362.

[10] Ragonis, N. and Hazzan, O. Tutoring model for promoting
teaching skills of computer science prospective teachers. In
Proceedings of the 13th Annual Conference on Innovation
and Technology in Computer Science Education. (Madrid,
Spain, June 30 - July 2, 2008). ACM Press New York, NY,
2008, 276-280.

