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Investigating the Role of Student Motivation in Computer 
Science Education through One-on-One Tutoring 

 

ABSTRACT.  The majority of computer science education research to date has focused 

on purely cognitive student outcomes.  Understanding the motivational states experienced 

by students may enhance our understanding of the computer science learning process, 

and may reveal important instructional interventions that could benefit student 

engagement and retention.  This article investigates issues of student motivation as they 

arise during one-on-one human tutoring in introductory computer science.  The findings 

suggest that the choices made during instructional discourse are associated with cognitive 

and motivational outcomes, and that particular strategies can be leveraged based on an 

understanding of the student motivational state.   

 

1. Introduction 

Research in computer science education explores how students develop an understanding of 

computation and computational systems.  Such research is informed by an emerging view of 

learning as a complex process involving cognitive, affective, and motivational states.  The 

cognitive aspect of learning involves memory and reasoning about the subject matter, while 

affective processes pertain to the emotional states experienced by the student.   Motivation refers 

to a student’s impetus for engaging in learning activities.  Together these dimensions provide a 

model that can be used to explore how students come to understand computer science.  

Research into cognitive learning issues informs the design of instructional interventions 

that facilitate the construction of computing knowledge.  Similarly, an understanding of the 
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motivational states experienced by students may inform a variety of approaches that enhance the 

learning process.  For example, a student who lacks motivation due to low self-confidence may 

be spurred to continue working with an educational software system when the system provides 

positive feedback (Tan & Biswas, 2006).  Conversely, certain instructional tactics such as 

explicit reassurance are best avoided with students who are already in a state of high motivation 

(e.g., Rebolledo-Mendez, Boulay, & Luckin,  2006).   

This article presents results obtained from examining student motivation during one-on-

one human tutoring sessions involving experienced human tutors and novice computer science 

students.  Tutoring has been recognized as an environment in which effective teaching strategies 

for computer science can be applied (Ragonis & Hazzan, 2008), and one-on-one tutoring is an 

excellent testbed for exploring research questions in computer science pedagogy because the 

constrained interaction facilitates control of conditions, capture of the instructional interaction, 

and coverage of different teaching scenarios beyond what is easily feasible in whole-class 

research studies (Boyer, Phillips, Wallis, Vouk, & Lester, 2009; Cade, Copeland, Person, & 

D’Mello, 2008).   

This article makes three contributions.  First, it presents the argument for studying 

student motivation as it occurs over a single period of learning.  Second, it makes the case that 

one-on-one human tutoring is a suitable testbed for exploring cognitive phenomena in computer 

science, and moreover, that human tutoring is an informative means by which student motivation 

and affect can be carefully investigated.  Finally, it presents the corpus analysis research 

methodology and the resulting empirical findings from three separate exploratory studies 

involving human tutors and novice computer science students.   
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The results to date suggest that the motivational components of control and confidence 

(Lepper, Woolverton, Mumme, & Gurtner, 1993) may influence computer science learning 

interactions in important ways, and that these motivational components may themselves be 

influenced to the student’s benefit through specific instructional strategies. 

This article is structured as follows.  Background on the role of motivation and tutorial 

dialogue from related literature is discussed in Section 2.  Section 3 presents the design of three 

exploratory research studies and describes the structure of the resulting data from human-human 

tutoring of introductory computer science.  Section 4 describes the research methodology applied 

to the data sets of tutorial dialogue.  Section 5 presents the results with subsections devoted to the 

motivational components of confidence (Sections 5.1 and 5.2) and control (Section 5.3).   

Discussion follows in Section 6, and conclusions are presented in Section 7. 

2. Background 

The overwhelming majority of computer science education literature has focused on the purely 

cognitive aspect of learning (Machanick, 2007).  This trend is not surprising given the alluring 

parallels between cognitive learning models and the basic functions of computing that are 

fundamental to the discipline.  For instance, the theoretical framework known as constructivism 

has been embraced for its insights into CS learning processes (Ben-Ari, 1998), and direct 

analogies are sometimes made between the constructivist view, in which students build and 

“debug” knowledge, and the activities involved in computer programming.  Constructivism and 

other purely cognitive models of learning (e.g., Bloom, 1956) are valuable in understanding 

many phenomena surrounding the teaching and learning of computing.  However, these models 

may not capture some important facets of the computer science learning process. 
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As Machanick (2007) observes, there exist phenomena in CS education that are not 

readily explained by current purely cognitive frameworks.  He proposes that social 

constructivism, a theoretical framework that is gaining acceptance in the broader education 

community, might offer explanations for the observed effectiveness of some approaches such as 

peer assessment and apprenticeship-style teaching (Guzdial & Tew, 2006).  The potential 

insights afforded by social constructivism stem from the theory’s foundational tenets that 

learning has important social roles, and that communication is key to defining the knowledge of 

a student.  Evidence of the importance of communication in computer science learning 

environments has been noted by Barker and Garvin-Doxas (2004), who observe that the type of 

discourse that occurs in a computing classroom has far-reaching effects on students.  Further 

results on the importance of communication and the social role of learning have emerged from 

research in the context of pair programming (Slaten, Droujkova, Berenson, Williams, & Layman, 

2005) and non-majors learning to program (Wiedenbeck, 2005).   

One instructional setting that has been proven effective in building knowledge and is rich 

in communication between student and instructor is one-on-one human tutoring.  Long studied as 

an exemplary way to facilitate mastery of a subject (e.g., Bloom, 1984), tutoring has been the 

setting for recent work in CS education research, for example, in investigating how students plan 

the solution to a programming problem (Lane & VanLehn, 2005).  When the conversation 

between tutor and student is captured, a corpus of tutorial dialogue is created that constitutes a 

record of the tutorial interaction.  Tutorial dialogue has been studied in depth by researchers from 

disciplines including cognitive psychology and artificial intelligence.  Foundational results in this 

area have revealed, for example, that tutorial dialogues often exhibit a regular, iterative structure 

that unfolds as tutor and student work through problems together (Graesser, Person, & Magliano, 
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1995).  In addition, extensive work has shown the importance of interaction as a source of 

effectiveness for one-on-one tutoring (Chi, Siler, Jeong, Yamauchi, & Hausmann, 2001).  

Finally, recent results suggest the effectiveness of tutoring sessions depends on the preparedness 

of the students at the outset (VanLehn et al., 2007). 

Because of the completeness of the instructional record created by controlled tutorial 

dialogue studies, it is possible to observe and make inferences about the fine details of student 

activities.  Patterns observed in the exploratory studies presented here indicate that student 

motivation is an important facet of computer science learning.  The findings suggest several 

hypotheses regarding the ways in which particular approaches may be implemented in practice to 

increase the motivational effectiveness of instructional dialogue in computer science. 

Motivation, which refers to a student’s impetus for engaging in learning activities, has 

received attention in the general education research community for at least two decades (e.g., 

Cameron & Pierce, 1994; Deci, Koestner, & Ryan, 2001; Keller, 1983).  Recently, motivating 

the student has also been identified as a component of a complete conception of teaching 

computer science (e.g., Lister et al., 2007).  Student motivation has also been considered in 

several recent empirical studies in computer science education.  For example, Soh, Samal, & 

Nugent (2007) included attitudinal variables for student self-efficacy and motivation as part of a 

data collection effort to assess the effectiveness of a redesigned computer science curriculum.  

Additionally, pair programming researchers recognize motivation as an important facet when 

measuring the impact of pair programming in educational settings (e.g., Williams, Wiebe, Yang, 

Ferzli, & Miller, 2002).  These studies show an increased awareness of the importance of 

motivation in the computer science learning process. 
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In much of the existing computer science education research, measures of motivation are 

taken at the beginning and end of an academic term in order to assess the impact of the 

instructional approach utilized during the term.  Tracking changes at this granularity has proven 

a useful research approach.  However, studying student motivation at a finer granularity, for 

instance, over the course of a single programming assignment, can complement the coarser 

granularity approach generally undertaken to date.  For example, Wolfe (2004) considers student 

motivation at the level of a single programming assignment, observing that the rhetoric used in 

problem descriptions does matter.  Wolfe’s concrete finding is that programming assignments 

may be more successful if they emphasize real-world purpose and human factors.  This kind of 

contribution is made possible by studying student motivation at a finer granularity than over 

entire academic terms.   

The study of human tutoring provides a means through which student motivation can be 

examined closely.  In this setting, instructional strategies for motivation can be examined as they 

naturally occur, and the impact of specific approaches can be measured at the level of individual 

students.  Lepper et al. (1993) studied the tactics of expert human tutors in various academic 

domains to inform a theory of how teachers take motivation into account while instructing 

students.  They posit that four dimensions of motivation can be influenced to enhance 

instruction:  control, curiosity, challenge, and confidence.  This work provides a theoretical 

framework for investigating human-human tutoring and emphasizes the importance of fine-

grained motivational analysis even down to the dialogue turn level.   

This article reports on three exploratory tutorial dialogue studies we conducted to 

investigate relationships between student learning, motivation, and specific dialogue phenomena 

that occur during tutoring.  Results speak to the motivational components of control and 
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confidence as they manifest during tutoring sessions centered around the task of solving an 

introductory programming exercise.  Each study involved naturalistic interaction between 

introductory computer science students and human tutors of varying experience levels.  The 

instructional interaction took place over the course of approximately one hour while students 

worked to solve a programming exercise.  The studies were conducted in a controlled setting so 

that all interaction between student and tutor could be logged for analysis.  The exploratory 

findings suggest that student motivation is an important component of the processes by which 

students come to understand computing. 

3. Design of Exploratory Studies 

This section describes the three tutoring studies.  Study I was conducted in Fall semester 2006, 

Study II was conducted in Spring semester 2007, and Study III was conducted in Spring semester 

2008.   

3.1 Participants 

Students were volunteers who were enrolled in an introductory university-level computer science 

course called “Introduction to Computing – Java” at the time of the study.  This course is the first 

in a series of computing courses offered at the university.  Study I involved 35 participants, 

Study II involved 43, and Study III included 61 participants.  Students were compensated for 

participation through a small amount of class credit that varied according to instructor 

preference.  Almost all students were of traditional college age, and, as in the larger class 

populations, the majority of participants were male.  Not all participants planned to major in 

computer science; enrollment in the introductory computer science course, and therefore 

participation in the studies reported here, included students whose declared majors were 
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mechanical, electrical, and computer engineering.  The studies began in the eighth week of the 

semester.  Studies I and II each spanned one week, and Study III spanned two weeks. 

3.2 Tutors 

Study I utilized six tutors:  four graduate students, one female and three male, and two upper-

division undergraduate students, both male.  Study II used fourteen tutors:  twelve graduate 

students, two female and ten male, plus two upper-division male undergraduate students.  Study 

III involved the two most effective tutors from the prior studies, that is, the tutors who had the 

highest average student learning gains across Study I and Study II.  The tutors in Study III were 

one female graduate student and one male upper-division undergraduate student.  All tutors 

across the studies were between the ages of 19 and 30.  All tutors had a minimum of one 

semester’s experience as a tutor or teaching assistant.  Several tutors in Study II also had 

extensive experience as classroom instructors.  None of the tutors were involved as instructors or 

teaching assistants with the course from which the participants were drawn.  Neither students’ 

nor tutors’ identities were revealed before, during, or after the tutoring sessions. 

The tutor orientation consisted of a problem-solving session in which all of the tutors met 

to work through alternate solutions to the exercise in order to refresh tutor knowledge and 

establish a breadth of solutions to the programming problem.  In addition, tutors were shown the 

student instruction video in order to familiarize them with the assumed starting knowledge of the 

student regarding the software being used.  The student instruction video also served as the tutor 

orientation to the software.  Tutors were not instructed to use specific instructional approaches or 

tutorial strategies because the intent was for each tutor to use his or her own strategies to 

accomplish the goal of helping students complete a programming exercise while ensuring that 

students developed an understanding of the general concepts used in the solution.  In this way, 
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the data represent a sampling of naturalistic human-human tutoring for introductory computer 

science.   

3.3 Problem-Solving Task 

The tutorial dialogue was centered around a problem-solving task.  For this task, Studies I and II 

used a programming exercise taken from the standard laboratory manual for the course 

(Appendix A).  In these studies, students attended the tutorial session in lieu of attending their 

regularly scheduled structured lab for the week in order to ensure that students had not already 

completed the programming exercise when they arrived to work with the tutor.  The 

programming exercise focused on the use of array data structures and loop constructs.  Students 

were provided a partial solution that included an (initially empty) graphical display of the 

generated results.  Students were required to complete three code modules to solve the 

programming problem.  Studies I and II were time-controlled at 50 and 55 minutes, respectively.  

Most students completed two of the three methods during the allotted tutoring time.  Based on 

tutor feedback from the previous two studies which indicated the programming problem was 

unnecessarily confusing for students, Study III used a slightly simplified programming exercise 

(Appendix B) that was designed with social relevance in mind, a property thought to be 

implicitly motivational to students (Layman, Williams, & Slaten, 2007).  As in the previous 

studies, the programming exercise focused on using array data structures and loop constructs to 

complete three modules.  In Study III, rather than controlling for time, students were permitted to 

work until completion of the programming exercise.   
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3.4 Procedure 

Upon arrival, participants completed a pair of written instruments consisting of survey items on 

the student’s motivation to study computer science, including the student’s confidence 

(Appendix C).  The confidence components of these motivation surveys were adapted from the 

Domain-Specific Self-Efficacy Scale (Bandura, 2006).   

 In Study I, this data was the first to be collected for each participant; in Studies II and III, 

participants were also asked to complete an electronic survey containing several demographic 

and psychometric instruments prior to arriving for the study.  The demographic instrument 

collected students’ ethnicity, expected graduation date, and major.  Psychometric instruments 

included the Achievement Goals Questionnaire (Elliot & McGregor, 2001) and the Interpersonal 

Reactivity Index (Davis, 1983).  These instruments were not analyzed for the results reported 

here.     

 The pretests and posttests (Appendix D) were handcrafted and evolved between studies in 

an effort to make the questions more sensitive to differences in learning that occurred over the 

course of the tutoring sessions.  The tests for Studies I and II underwent no external evaluation; 

for Study III, the pre/post test underwent formal review by a panel of three independent subject 

matter experts with experience in teaching introductory computer science.   

 Upon completing the written instruments, students were seated at a computer where they 

watched a short instructional video to familiarize them with the software that would be used.  

Upon completion of the instructional video, students worked remotely with a tutor while 

planning and implementing the solution to the programming exercise.  When the tutoring session 

reached its conclusion, a paper-based post-survey and posttest were administered whose items 

were analogous to the pre-survey and pretest. 
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3.5 Tutorial Interaction 

In order to fully capture the interaction between student and tutor, students reported to a separate 

room from their tutor and worked remotely with the tutor using software designed to facilitate 

real time remote collaboration on programming projects (Boyer, Dwight, Fondren, Vouk, & 

Lester, 2008).  Using this software package, the student and tutor engaged in dialogue through a 

textual interface similar to mainstream chat messaging programs (Figure 1).  As students 

constructed Java code in the Eclipse IDE (The Eclipse Foundation, 2009), an Eclipse plug-in 

transmitted the student’s problem-solving actions to the tutor in real time.  The tutor was thus 

able to observe student problem-solving actions (e.g., programming, scrolling, executing) 

continuously throughout the tutoring session.  Tutors were limited to viewing students’ 

programs; only students could edit programs.  All interactions between the student and tutor, as 

well as all student programming actions, were logged to a database for further analysis. 

Tutors and students were not aware of each other’s identity.  No individual characteristics 

(including gender, ethnicity, age, or level of preparedness) were disclosed to the tutor or the 

student.  This restriction was communicated to all participants ahead of time.  In the rare event 

that students inquired as to the tutor’s identity, tutors were instructed to redirect the student with 

a response such as, “Sorry, we’re supposed to talk only about the programming exercise.”  The 

need for this redirection arose infrequently in the studies, but was necessary to ensure that 

student and tutor assumptions would be controlled to the fullest extent possible. 

In Study I, there were no restrictions placed on the construction of dialogue messages; 

that is, while one user actively constructed a textual message, the other user was also permitted 

to construct and send messages.  This design choice was made because of its consistency with 

the interface design of commercial instant messaging platforms familiar to the student  
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population.  In these instant messaging platforms, if one user completes a new message (possibly 

starting a new topic) while the other user is typing a response to the previous topic, the 

chronological  record  of  dialogue  can  appear  inconsistent  with  respect  to  the  conversational  

structure.  Human users deal with this phenomenon readily as the textual dialogue unfolds in real 

time; however, the situation gives rise to analysis challenges because researchers must 

“untangle” the logs manually before analysis.  To address this issue, the dialogue interface was 

modified for Studies II and III to enforce strict turn-taking.  When a user was actively 

constructing an utterance in the textual dialogue interface, the other user was not permitted to 

construct an utterance.  However, the student was permitted to continue working in the problem-

solving window regardless of the status of the textual dialogue interface.   

Figure 1:  Tutorial dialogue and problem-solving interface 
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4. Methodology 

Corpus analysis is a research methodology commonly used in computational linguistics 

(Jurafsky & Martin, 2008).  The approach involves first obtaining a body of text called a corpus 

and then marking this text for features that are not explicitly present on its surface in a process 

called annotation.  The marks that are applied are often referred to as tags.  In an effort to 

describe the corpus in a concise way or to establish relationships between qualities in the corpus 

and other external entities of interest, the occurrences of the tags are often modeled using 

quantitative methods.  This section presents the results of applying this general corpus analysis 

methodology involving two different levels of annotation:  dialogue act annotation, which 

involves marking each utterance with its intended purpose (e.g., question, feedback), and 

initiative annotation, which involves marking larger sections of the dialogue to indicate which of 

the participants was leading the dialogue at each point (e.g., tutor or student).  

4.1 Data 

The data traces generated by these studies include student programming actions at the keystroke 

level, as well as all textual dialogue utterances between participants.  Each of the three studies 

yielded a chronological log with over five thousand dialogue moves and tens of thousands of 

student programming actions.  These data constitute a task-oriented corpus of tutorial dialogue 

to which widely-used corpus analysis techniques, beginning with corpus annotation, were 

applied.  Through the process of annotation, the raw corpora were transformed into meaningful 

representations of the tutoring interactions.  The remainder of this section describes the 

annotation schemes.   
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4.2 Dialogue Act Annotation 

Employed in Studies I and II, dialogue act annotation involves marking each dialogue move with 

a tag summarizing the utterance’s purpose (e.g., greeting, questioning, answering, disagreeing).  

For example, in tutorial dialogue, examples of common dialogue acts include asking questions 

(e.g., “What kind of variable should I use?”), making assessments of knowledge (e.g., “I don’t 

know how to declare an array.”), and acknowledging a previous statement (e.g., “Got it.”).  

Because there is no gold standard for annotating tutorial dialogue, our set of dialogue act tags 

was adapted from annotation schemes from the dialogue analysis literature to capture the salient 

characteristics of the corpora.  Some dialogue acts were taken directly from a set applied in the 

domain of qualitative physics (Forbes-Riley, Litman, Heuttner, & Ward, 2005), while other tags 

were inspired by a more expansive set of tags created for general natural language dialogue 

(Stolcke et al., 2000).  Because a single utterance might communicate cognitive, affective, and 

motivational content, the set of dialogue act tags was divided into two channels:  an 

affective/motivational channel and a cognitive channel.1  Table 1 illustrates the dialogue act tags 

as applied during Study II; Study I involved further distinctions within the Question tag and the 

Feedback tags, but these distinctions were not made for Study II.   

4.3 Problem-Solving Act Annotation 

The corpora contain a variety of problem-solving actions taken by the student.  These 

programming actions include opening and closing files, typing new text in the program editor 

window, and scrolling through program files.  Most of these categories of programming actions 

were sparse and were therefore eliminated from analyses, leaving the two most common  

                                                
1 The tagging scheme was divided into cognitive and affective/motivational channels.  Although the analysis 
presented here focuses only on the motivational tags in the affective/motivational channel, the entire tagging scheme 
is presented for completeness.   
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Table 1:  Dialogue Act Tagging Scheme for Study II 
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programming actions of typing Java code in the programming interface and scrolling in the 

program editor.  The events were automatically tagged using a heuristic for correctness:  if a 

problem-solving action was a programming keystroke that survived until the end of the session, 

this event was tagged promising, to indicate it was probably correct; if a problem-solving act was 

a  programming  keystroke  that did not  survive until the end of the session, the problem-solving  

act was tagged questionable.  Both of these heuristics are based on the observation that in this 

tutoring context, students solved the problem in a linear fashion and tutors did not allow students 

to proceed past a step that had incorrect code in place.  Finally, periods of consecutive scrolling 

were also marked questionable because in a problem whose entire solution fits on one printed 

page, scrolling was usually conducted in irrelevant source files included to support graphical 

output of the programming exercise.  Because the student’s solution did not interface directly 

with these source files, scrolling through them was almost uniformly not a productive problem-

solving step.  This automatic tagging for correctness was applied for the purposes of Study II. 

4.4 Annotation for Initiative  

While dialogue act annotation involves marking a corpus at the level of dialogue turns, another 

useful type of annotation entails marking the higher-level structure of the dialogue.  Tags at the 

dialogue structure level can span many individual dialogue acts.  Since the corpora consist of 

dialogue turns interleaved chronologically with student problem-solving actions, dialogue 

structure tags span contiguous sections of textual dialogue and student problem-solving.  One 

important aspect of dialogue structure involves initiative, that is, which speaker has control and 

direction of the conversation at a given point in time.  This level of annotation was performed in 

Study III.  The tutorial dialogue corpora lent themselves readily to two tags for initiative:  

Student-Initiative and Tutor-Initiative.    
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In Student-Initiative mode, the student maintains control and direction over the problem-

solving effort.  Student-Initiative mode is characterized by the following activities:   

• The student states his/her plan and (optionally) asks the tutor for feedback. 

• The student reads the problem description or constructs a portion of the actual 

solution independently, as indicated by no dialogue exchanged while the student is 

conducting these problem-solving activities. 

• The student asks content-based questions (e.g., “I should start this index at 0, right?”) 

as opposed to content-free questions (e.g., “What do I do now?”).   

In Tutor-Initiative mode, the tutor directs the problem-solving effort.  Because the user 

interface does not allow tutors to edit the students’ solutions, Tutor-Initiative mode does not 

involve the tutor actively constructing the problem solution.  However, the tutor often used the 

textual dialogue interface to actively guide and direct the student to take very specific problem-

solving actions.  Tutor-Initiative mode includes the following activities:   

• The tutor offers unsolicited advice or correction. 

• The tutor lectures on a concept. 

• The tutor explicitly suggests the next step in problem solving. 

• The tutor poses questions to the student. 

To illustrate the initiative modes, two excerpts are presented (Table 2).  The first excerpt 

illustrates Student-Initiative mode.  In this excerpt, the student asks a content-based question 

indicating he knows the problem lies in a return statement.  The tutor provides an answer, which 

the student acknowledges.  Finally, the student spends five uninterrupted minutes coding part of 

the problem solution.  Lengthy periods of independent student work are common in Student-

Initiative  mode.   The second excerpt illustrates Tutor-Initiative mode.   In this excerpt,  the tutor  
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gives unsolicited advice and asks questions of the student.  The student spends a brief time 

repairing  the  problem  solution,  and  the  tutor  once  more  provides  unsolicited  feedback.  As  

illustrated in this excerpt, brief periods of student work interspersed with frequent dialogue are 

common in Tutor-Initiative mode. 

5. Results  

This section presents results from three tutorial dialogue studies that employ a mixed methods 

research methodology:  data sources include both quantitative data gained from survey responses 

Table 2.  Excerpts of Student-Initiative and Tutor-Initiative modes from Study III 
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and test scores (Section 3.4), along with qualitative data resulting from the interpretation 

(through tagging) of textual dialogues.  A mixed methods approach is appropriate when the 

research questions involve why certain quantitative results have been observed (Creswell & 

Clark, 2006).  In the current work, tutorial dialogue structure is hypothesized to explain, at least 

in part, quantitative results involving learning and confidence. 

    The first result deals with the ways in which human tutors naturally adapt to student 

characteristics such as self-confidence.  The second set of findings suggest that specific types of 

tutorial feedback may be associated with different student confidence outcomes, while the third 

result deals with learning and confidence as they relate to the level of initiative taken by the tutor 

during the tutoring sessions.  Together, these exploratory results inform hypotheses regarding the 

role of student motivation, and how instructional strategies might address it, in computer science 

learning. 

5.1 Study I:  Tutorial Adaptation to Student Confidence 

Self-confidence is an important component of student motivation.  The results from Study I 

suggest that tutors may adapt their strategies in specific ways based on student confidence.  

Although no student characteristics were explicitly revealed to the tutors, the dialogue structure of 

students with low self-confidence differed significantly from that of students with high self-

confidence.   

The corpus from Study I consists of 5,034 dialogue acts:  3,075 tutor turns and 1,959 

student turns.  The entire corpus was manually annotated for dialogue acts by a single researcher, 

with a second researcher annotating a subset of 969 total utterances.  An agreement study to 

evaluate the consistency of the coding scheme and its application to the corpus found a Kappa 

agreement statistic of 0.75, indicating reasonable inter-rater reliability (Cohen, 1960).  In order to 
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compare tutorial sessions, the relative frequency of each dialogue act was computed as the ratio of 

the number of occurrences of that dialogue act to the total number of dialogue acts in the session 

(Boyer, Vouk, & Lester, 2007).   

 Overall, the tutoring sessions in Study I were effective:  on average, students scored 13% 

higher on the posttest than the pretest.  This average learning gain is statistically significant 

(p<0.0001 using a t-test with 34 DF, SD=0.12) and the effect size is 1.08.  For further analysis, 

students were divided into two groups based on the self-reported confidence score.  This measure 

was obtained from a pre-survey item in which students were asked to rate their own confidence, on 

a scale of 0-100, that they could complete a simple programming exercise on their own.  

Students were classified as being in one of two groups, highly-confident or less-confident, 

according to whether the self-reported confidence level of that participant fell above or below the 

median reported confidence level of all participants.   

 Some dialogue acts occurred with significantly different relative frequencies between the two 

confidence groups.  The relative frequency of the following dialogue acts was significantly 

different between the highly-confident and less-confident groups: 

• Students in the highly-confident group made more declarative statements, or assertions, 

than students in the less-confident group (p=0.044, t-test with unequal variances, 22.8 

DF, SDhigh=0.04, SDlow=0.01). 

• Tutors paired with less-confident students gave more negative feedback (p=0.021, t-

test with unequal variances, 15.7 DF, SDhigh=0.0009, SDlow=0.0054) and made fewer 

acknowledgements (p=0.05, t-test with unequal variances, 21.9 DF, SDhigh=0.03, 

SDlow=0.008) than tutors paired with highly-confident students.  
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The relative frequencies of other dialogue acts showed no significant difference between the groups.  

These findings suggest the hypothesis that differing levels of student self-confidence are 

associated with structural differences in the tutor-student interaction.  This result highlights the 

importance of further study of these phenomena. 

5.2 Study II:  Impact of Corrective Feedback on Student Motivation 

Although the learning gain results indicate that the tutoring sessions were effective, Study I did 

not indicate which tutorial adaptations might be more or less effective from either a cognitive or 

a motivational perspective.  To address this limitation, Study II (Boyer, Phillips, Wallis, Vouk, & 

Lester, 2008) examined the impact of certain cognitive and motivational corrective strategies 

focusing on three categories of dialogue acts utilized by tutors.  The motivational strategies of 

praise and reassurance were compared with several types of cognitive feedback to identify 

relationships with student cognitive and motivational outcomes.  In order to focus the analysis, 

these strategies were analyzed when they were used immediately following plausibly incorrect, 

or questionable, student problem-solving actions. 

 The corpus from Study II consists of 4,864 dialogue moves:  1,528 student utterances and 3,336 

tutor utterances.  All dialogue moves were annotated for dialogue acts using the dialogue act tag set 

shown in Table 1.  As in Study I, an agreement study was conducted.  A second researcher 

annotated 1,418 utterances from the corpus, and the resulting Kappa agreement statistic was 0.76, 

indicating reasonable inter-rater reliability.  In addition to dialogue act tagging, all student 

programming actions were automatically annotated using the problem-solving annotation described 

earlier.  Of the 3,336 tutor utterances, 1,243 occurred directly after a student problem-solving action 

that had been tagged questionable.  Because these utterances immediately followed student action 
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that presumably warranted correction, this subset of tutorial utterances served as the basis for 

comparing corrective tutorial strategies. 

 Overall, the forty-three tutoring sessions were effective, yielding a mean 5.9% learning gain 

from pretest to posttest across all participants.  This difference is statistically significant (p=0.038, t-

test with pooled variance, 42 DF, SD=0.18), though displaying a modest effect size of 0.33.  For 

this study, cognitive benefit as well as motivational benefit were considered.  Students rated their 

own self-confidence regarding the subject matter significantly higher, 12.1% on average, after the 

tutoring session than before (p=0.0021, t-test with pooled variance, 42 DF, SD=0.24) with effect 

size 0.5.   

As in Study I, the student outcomes of learning gain and self-confidence gain for each 

participant were partitioned into binary categories of High and Low based on the median gain 

scores of all participants.  Multiple logistic regression was then applied to determine whether a 

relationship existed between corrective tutorial strategy and student outcomes.   

 The results suggest that different types of tutorial feedback are related to different 

cognitive and motivational student outcomes.  The analyses revealed the following results: 

• Purely cognitive feedback was more often associated with high student learning gain 

than cognitive feedback that had an additional explicit component of praise.  After 

accounting for the effects of pretest score and incoming confidence rating by 

including these as predictors in a logistic regression model with learning gain as the 

response variable,2 observations in which the tutor used cognitive feedback plus 

praise were associated with 40% lower likelihood of high learning gain than 

                                                
2 These variables are included as predictors in all logistic regression models reported in this section in order to 
control for the influence of incoming knowledge level and confidence on the outcomes.   
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observations in which the tutor used purely cognitive feedback (p=0.001, significant 

logistic regression coefficient).   

• Purely motivational dialogue moves, such as praise or reassurance, were associated 

with a greater gain in self-confidence among initially less-confident students.  

Observations in which the tutor employed a standalone motivational act were 300% 

as likely to be in the high confidence gain group as observations in which the tutor 

employed a purely cognitive statement or a cognitive statement combined with 

encouragement (p=0.039, significant logistic regression coefficient).  On the other 

hand, these purely motivational acts on the part of the tutor were associated with 90% 

lower odds of high confidence gain in initially highly-confident students (p=0.04, 

significant logistic regression coefficient).   

• The choice of tutor positive cognitive feedback was associated with 190% increased 

odds of the student experiencing high self-confidence gain compared to when tutors 

chose any other type of cognitive feedback (p=0.0057, significant logistic regression 

coefficient). 

These results suggest that although some tradeoffs may exist between maximizing 

learning gains and strategies sometimes used to motivate the student, it may be possible 

to choose instructional strategies that enhance student motivation without sacrificing 

cognitive outcomes.   

5.3 Study III:  Student Control 

A healthy level of student autonomy is thought to support increased motivation (e.g., Dickinson, 

1995).  For this reason, student control during a tutoring session may be an important 

motivational component.  One way to adjust student control in a one-on-one tutoring scenario is 
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for the tutor to take varying degrees of initiative.  Results presented in this section explore 

whether there was difference in learning gains (measured by posttest score minus pretest score) 

or confidence gains between groups of students paired with tutors who naturally took 

significantly different levels of initiative.     

 Study III (Boyer, Phillips, Wallis, Vouk, & Lester, 2009) utilized the two most effective 

tutors from the prior two tutoring studies.  There were sixty-one tutoring sessions distributed 

approximately equally between the tutors.  From these sessions, fifteen were randomly selected 

for each tutor yielding a total of thirty sessions to be annotated for initiative using the annotation 

scheme described earlier.   

 Each Student-Initiative and Tutor-Initiative tag was associated with a duration of time 

over which that instance of the tutoring mode occurred.  The sum (in minutes) of all Tutor-

Initiative periods in a given tutorial session divided by the total time elapsed during the session 

yielded the percentage of the tutoring session that was spent in Tutor-Initiative mode.  One tutor, 

referred to as the moderate tutor, took the initiative 55% of the time on average.  The proactive 

tutor took the initiative an average of 73% of the time, constituting a significant difference in 

approach (p=0.029, t-test with pooled variances, 28 DF, SD=0.21).  While one possible 

explanation for this difference could be that, despite the randomized assignment of students to 

tutors, the moderate tutor may have been assigned a group of students with a different level of 

preparedness than the proactive tutor, analysis of pretest scores suggests this confounding factor 

was not present.  Average student pretest scores were 79.5% for the moderate tutor and 78.9% 

for the proactive tutor, yielding no evidence of a difference in student preparedness between the 

two treatment groups for the subset of students considered in the initiative annotation (p=0.764, 

t-test with pooled variances, 28 DF, SD=0.19).   
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 For each participant, the cognitive outcome of learning gain was calculated as posttest 

score minus pretest score.  The mean learning gain across each set of fifteen annotated student 

sessions was 6.9% for the moderate tutor and 6.0% for the proactive tutor, yielding no evidence 

of improved learning gains associated with a particular level of student control (p=0.895, t-test 

with pooled variances, 27 DF, SD=0.09). 

It is reasonable to assume that the thirty sessions were representative of the larger data set 

in terms of tutor initiative because the subset was selected at random.  Therefore, it is meaningful 

to consider all learning gains and assume each tutor took a sufficiently uniform approach across 

all tutoring sessions.  The mean learning gain for all students tutored with the moderate approach 

was 6.9%, while the mean learning gain for the proactive tutor was 8.6%.  In this larger set of 

learning gains, there is still no evidence that one tutor was more or less effective than the other 

(p=0.569, t-test with pooled variances, 58 DF, SD=0.11).  

Student self-confidence gain was measured as the difference between post-survey and 

pre-survey score on an item that asked students to rate their confidence, on a scale of 0-100, in 

having the ability to learn the necessary course material for their introductory computer science 

class.  A significantly different average confidence gain was found between student groups 

paired with the two tutors.  Students who worked with the proactive tutor had an average 

confidence gain of less than one point from pre-survey to post-survey.  On the other hand, 

students paired with the moderate tutor had an average confidence gain of more than six points, 

which is significantly higher (p=0.047, t-test with pooled variance, 28 DF, SD=6.5).  This 

finding suggests the following hypothesis:  within the two levels of tutor initiative considered 

here, affording the student more control may yield motivational benefit without sacrificing 

cognitive outcomes.  
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6. Discussion 

Extensive research, including many active projects by computing education researchers and 

practitioners, are providing an emerging picture of the cognitive issues that arise on a student’s 

path toward understanding computing.  These results give rise to interventions aimed at 

addressing misconceptions, repairing mental models, and facilitating algorithmic thinking.  In the 

same way, an understanding of student motivation may guide instructional interventions that 

enhance student engagement and encourage persistence in learning computing.  The instructional 

strategies presented here were observed in naturalistic human-human tutoring sessions in 

introductory computer science.  The task-oriented tutorial sessions involved experienced human 

tutors and novice computer science students who were working to solve a programming exercise.  

The tutors and students communicated remotely through textual dialogue.  Textual 

communication is representative of much of the instructional discourse that takes place in 

today’s computer science learning environments; therefore, results concerning the instructional 

strategies used in remote textual human-human tutoring are meaningful for other areas such as 

online message boards, correspondence with teaching assistants, and the design of educational 

systems. 

6.1 Discussion of Related Work 

The results reported here suggest that structural differences in tutorial dialogue can be observed 

depending on whether students display high or low initial confidence related to the computing 

task at hand.  In addition, findings suggest the hypothesis that certain instructional strategies, 

such as positive feedback, are associated with increased student confidence gains.  This result 

reinforces prior research suggesting that during an introductory programming course, in order to 
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increase self-efficacy, students benefit from frequent small successes and feedback 

(Ramalingam, LaBelle, & Weidenbeck, 2004).  In the tutorial case, the reason for providing 

positive feedback even following potentially incorrect student problem-solving action may be 

that the positive feedback can be followed by correction, and this indirect correction is an 

example of a potentially beneficial politeness strategy in which the tutor avoids direct 

confrontation regarding a student’s mistake (e.g., Porayska-Pomsta & Pain, 2004; Wang, 

Johnson, Rizzo, Shaw, & Mayer, 2005).   

The final study involved analysis of tutorial dialogue structure to investigate the impact 

of instructor initiative.  The study found that students who were allowed more control 

experienced higher gains in self-confidence, with no significant difference in learning gain.  This 

is an important preliminary finding, since an increased sense of control is hypothesized to be 

beneficial for student motivation (Dickinson, 1995).  While some motivational and cognitive 

goals are known to be at odds with one another (e.g., Lepper, Woolverton, Mumme, & Gurtner, 

1993), future work on student self-confidence could clarify how levels of student control can 

enhance motivation without sacrificing cognitive outcomes.  

6.2 Threats to Validity 

The three studies presented here are exploratory in nature and, as such, are not intended to 

confirm specific hypotheses regarding the impact of instructional strategies on student 

motivation.  The primary limitation of the studies stems from two sources:  1) the absence of 

control groups, and 2) the abundance of factors that were allowed to vary across treatments.  It is 

plausible that factors other than those explored here are responsible for the association between 

tutorial strategies and student motivation.  However, the work presented here has revealed 

hypotheses that can inform future controlled experiments. 
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 Another threat to validity involves the potential error when applying the heuristic for 

problem-solving action correctness in Study II.  Based on the automatic application of a small set 

of rules, the tags of Questionable or Promising with regard to student actions may not 

correspond well to the judgment the tutors made in real time.  This confound is a potential source 

of error whose magnitude cannot be assessed with the data available.  Future studies will feature 

manual tagging of the student problem-solving actions to avoid the challenges presented by the 

rule-based heuristic tags. 

 Finally, handcrafted tests and surveys comprise the sources of quantitative data in this 

mixed methods research.  For Studies I and II, the tests did not undergo any formal validation, 

and for Study III the evaluation was limited to review by a panel of three subject matter experts.  

The surveys, while based on widely-used instruments to measure student self-confidence, have 

not themselves undergone validation studies.   

7. Conclusion 

One-on-one human tutoring is a viable research tool for studying fine-grained instructional 

approaches and their effects on individual students.   Our findings suggest that in computer 

science education, instructional strategy may have an appreciable effect not only on purely 

cognitive outcomes such as learning gain, but also on important motivational outcomes such as 

self-confidence.  These results, which are based on three separate exploratory studies of 

naturalistic human-human tutoring in introductory computer science, provide early clues as to 

the impact of different instructional strategies on computer science students.   

 Future work will involve integrating the corpora from the three separate studies.  It is 

likely that, to the extent these data sets can be considered homogeneous, combining them can 

strengthen and clarify the results presented here.  Another area for future work includes 
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conducting focused experiments to test the hypotheses that emerged from these exploratory 

studies.  In future experiments, enhancements to the current methodology, such as manually 

tagging student problem-solving actions, could strengthen the findings.  In addition, other work 

on the motivational components of curiosity and challenge (Lepper, Woolverton, Mumme, & 

Gurtner, 1993) suggest that these aspects of student motivation should also be investigated along 

with confidence and control in the context of computer science education.   
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Appendix A 

Programming Exercise for Studies I and II 

The Problem: 
For faster sorting of letters, the United States Postal Service encourages companies that send large 
volumes of mail to use a bar code denoting the ZIP code.  Using the skeleton GUI program provided for 
you, you will complete this lab with code to actually generate the bar code for a given zip code. 
 
More About Bar Codes: 
In postal bar codes, there is a full-height frame bar on each end (and these are drawn automatically by the 
program provided for you; you don't have to write code to draw these). Each of the five encoded digits is 
represented by five bars.  The five encoded digits are followed by a correction digit.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Correction Digit 
The correction digit is computed as follows: Add up all digits, and choose the correct digit to make the 
sum a multiple of 10. For example, the ZIP code 95014 has sum of digits 19, so the correction digit is 1 to 
make the sum equal to 20. 
 
What’s Already Written? 
You can see what parts of this program are already written by running the file Main.java.  When you do, 
you should see output like the image below, with a blank zip code slot.  You can enter a zip code, and you 
should see that no bar code is generated (except the first and last full bars which are required for all bar 
codes). 
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What’s Your Task? 
Your job is to take this five-digit zip code and use it to generate a bar code.  The PostalFrame class is the 
one which handles this task.  The three methods which you must complete are: 
 extractDigits() 
 calculateAndDrawCDigit() 
 drawZIPCode() 
For extractDigits(), you will need to add a private variable to the class which stores the zip code as 
separate digits. 
  
Some Helpful Information 
- If you can’t remember how to do something with the software, please refer to the reference sheet 

on your desk.   
 
- This lab involves a package named postal.  This package contains classes Bar, FullBar, 

PostalBarCode, and SmallBar.  The reason these classes are grouped into a package, is that the 
classes of the postal package logically belong together to accomplish a task.  Whenever you need 
to use things from one package outside of that package, you just import the package.  This has 
already been done for you in Main and PostalFrame – you will see the statement import postal.* 
at the top.  In addition to code already provided, you will need to call methods in the 
PostalBarCode class from your PostalFrame class to draw full and small bars. 

 
- Each digit of the ZIP code and the correction digit are encoded according to the following table 

(each digit has five bars -- a zero is a half bar and a one is a full bar). This scheme represents all 
combinations of two full and three half bars. 

 
Digit   
0 1 1 0 0 0 
1 0 0 0 1 1 
2 0 0 1 0 1 
3 0 0 1 1 0 
4 0 1 0 0 1 
5 0 1 0 1 0 
6 0 1 1 0 0 
7 1 0 0 0 1 
8 1 0 0 1 0 
9 1 0 1 0 0 
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Appendix B 

Programming Exercise for Study III 

To help ensure the safety of their residents, the Waimea County 
Emergency Response office is re-assessing their ambulance dispatch 
system.  A study has already been conducted to gather data about the 
ambulance response times to 911 calls.  You have been hired to analyze 
this data and help the emergency response office answer some questions 
about how quickly their ambulances are able to reach people in need.  
You’ll be taking over for Maddie, the previous developer who was 
recently promoted.   
 
Maddie already completed the class called Ambulance.java, which is a 
driver for the whole program (it contains the main method).  She also completed AmbulanceGUI.java, 
which is used for displaying the ambulance response times graphically.  You just need to complete a few 
methods in the AmbulanceData class in order to finish this project!   
 

1. In the AmbulanceData class, you must complete the method plotTimes() so that all the ambulance 
response times in the parameter array (arrayToPlot) are displayed on a graph.  Maddie already 
created the method outline with some comments, so you’ll just need to read her comments and fill 
in the method. 
 
Maddie had an intern draw a graph by hand for the response times.  This way, you know what the 
output of your program is supposed to look like.  The x-axis is how many minutes an ambulance 
took to respond, the y-axis is a count of how many of the response times in the data set took that 
long.  For instance, there were three ambulance responses that took 7 minutes.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. The department is considering replacing its aging fleet with new ambulances.  Because of the 
county’s tight budget, these would be slightly slower ambulances than the current fleet but the 
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county could afford more ambulances overall.  The staff believe the effects of this change would 
be:   
- On all response times below 5 minutes, the new fleet would take 1 minute longer to respond. 
- On all response times above 18 minutes, the new fleet would take 4 fewer minutes to 

respond. 
- Other response times would remain the same. 
Complete the method newFleetProjections() which creates a new array of hypothetical response 
times given the above effects of the new fleet.  You will need to create a new array because you 
must not overwrite the true response times in the original array.   
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
3. There is more analysis work than Maddie originally thought, so one of your colleagues, Shannon, 

is writing a set of methods that perform the statistical analysis so your group can give a detailed 
report to the Waimea County authorities.  Shannon’s code needs to be able to pass an array of 
unsorted times to a sortArray method, and get back an array of sorted times.  Write a method 
called sortArray in the AmbulanceData class.  The sortArray method should take an array of 
doubles as a parameter, and return a sorted ascending version of the parameter array without 
overwriting the contents of the original array.   
   The next page has some details of how your sort method should work. 
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Appendix C 

Confidence and Attitude Survey from Study III 

Please rate how certain you are that you can do each of the things described below by writing the 
appropriate number. 
 
Rate your degree of confidence by recording a number from 0 to 100 using the scale given below: 
 

 0 10 20 30 40 50 60 70 80 90 100  
Cannot do 

at all 
  Moderately 

can do 
  Highly certain 

Can do 
 
 Confidence 

(0-100) 
Learn Computer Science. ________ 

Learn CSC 116 course material. ________ 

Complete a simple programming exercise on my own. ________ 

Complete a challenging programming exercise on my own. ________ 

Complete a challenging programming exercise if I am in a lab where a 
TA is available to help me. 

________ 

Explain for-loops to others well. ________ 

Explain arrays to others well. ________ 

Explain method calls to others well. ________ 

Use for-loops in a programming exercise correctly and effectively. ________ 

Use arrays in a programming exercise correctly and effectively. ________ 

Make method calls in a programming exercise correctly and effectively. ________ 

 
 

Please rate the degree to which you agree or disagree with the following statements: 
 Not At All  Moderate  Very Much 

I usually enjoy CSC 116 course material. ○ ○ ○ ○ ○ 

I usually find CSC 116 exercises 
challenging. 

○ ○ ○ ○ ○ 

I understand for-loops. ○ ○ ○ ○ ○ 

I understand arrays. ○ ○ ○ ○ ○ 

I am experienced using the eclipse 
development environment. 

○ ○ ○ ○ ○ 

I am experienced with communicating 
through typed instant messages. 

○ ○ ○ ○ ○ 
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Appendix D 

Pre/Post Test Excerpt  from Study III 
 

1. Write a chunk of Java code to accomplish each of these tasks: 
 

a. Declare an array of integer type and give it an initial size of 100. 
 
b. Test the ith element of the array you declared in part a of this question and print “true” if the 

element is equal to 5 and “false” otherwise. Assume that i has already been declared and 
initialized. 

 
c. Set the ith element of the array you declared in part a of this question to be 5. Again, assume 

that i has already been declared and initialized. 
 

2.  A separate class named MyClass defines a printValue method as follows: 
 

public static void printValue(float x) { 
  // function body here 
 } 
 

In the following PrintAllValues method you want to call the method MyClass.printValue 
on every element of the array myArray.  Fill in the blanks below to do this. 

 
public void PrintAllValues() { 
 float [] myArray = new float[20]; 
 

for (_____________;_____________;_____________) { 
   MyClass.printValue(_____________); 

} 
} 

 
3. Write a piece of Java code that prints “Cowabunga!” exactly 73 times. System.out.println can be used 

to print the string. 
 
4. In a Java program, an array named firstArray of type int has been created and initialized.  

Write a line of Java code to create an array named secondArray that is the same size and same 
type as firstArray. The contents of secondArray do not need to be initialized to be the same 
as the contents of firstArray. 

 
5. Complete the following Java method so that it returns the average of all the elements in the array 

myArray. 
 
 public double returnAverage(double [] myArray) { 
    double average = 0; 
 
    return average; 
 } 


