
 1

Computer Science Education, vol. 19, iss. 2, pp. 111-136
Author’s preprint version.

Investigating the Role of Student Motivation in Computer
Science Education through One-on-One Tutoring

Kristy Elizabeth Boyer,§* Robert Phillips,§+ Michael D. Wallis,§+
Mladen A. Vouk,§ and James C. Lester§

§ Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

+ Applied Research Associates, Inc.

Raleigh, North Carolina, USA

* Corresponding author: keboyer@ncsu.edu

 2

Investigating the Role of Student Motivation in Computer
Science Education through One-on-One Tutoring

ABSTRACT. The majority of computer science education research to date has focused

on purely cognitive student outcomes. Understanding the motivational states experienced

by students may enhance our understanding of the computer science learning process,

and may reveal important instructional interventions that could benefit student

engagement and retention. This article investigates issues of student motivation as they

arise during one-on-one human tutoring in introductory computer science. The findings

suggest that the choices made during instructional discourse are associated with cognitive

and motivational outcomes, and that particular strategies can be leveraged based on an

understanding of the student motivational state.

1. Introduction

Research in computer science education explores how students develop an understanding of

computation and computational systems. Such research is informed by an emerging view of

learning as a complex process involving cognitive, affective, and motivational states. The

cognitive aspect of learning involves memory and reasoning about the subject matter, while

affective processes pertain to the emotional states experienced by the student. Motivation refers

to a student’s impetus for engaging in learning activities. Together these dimensions provide a

model that can be used to explore how students come to understand computer science.

Research into cognitive learning issues informs the design of instructional interventions

that facilitate the construction of computing knowledge. Similarly, an understanding of the

 3

motivational states experienced by students may inform a variety of approaches that enhance the

learning process. For example, a student who lacks motivation due to low self-confidence may

be spurred to continue working with an educational software system when the system provides

positive feedback (Tan & Biswas, 2006). Conversely, certain instructional tactics such as

explicit reassurance are best avoided with students who are already in a state of high motivation

(e.g., Rebolledo-Mendez, Boulay, & Luckin, 2006).

This article presents results obtained from examining student motivation during one-on-

one human tutoring sessions involving experienced human tutors and novice computer science

students. Tutoring has been recognized as an environment in which effective teaching strategies

for computer science can be applied (Ragonis & Hazzan, 2008), and one-on-one tutoring is an

excellent testbed for exploring research questions in computer science pedagogy because the

constrained interaction facilitates control of conditions, capture of the instructional interaction,

and coverage of different teaching scenarios beyond what is easily feasible in whole-class

research studies (Boyer, Phillips, Wallis, Vouk, & Lester, 2009; Cade, Copeland, Person, &

D’Mello, 2008).

This article makes three contributions. First, it presents the argument for studying

student motivation as it occurs over a single period of learning. Second, it makes the case that

one-on-one human tutoring is a suitable testbed for exploring cognitive phenomena in computer

science, and moreover, that human tutoring is an informative means by which student motivation

and affect can be carefully investigated. Finally, it presents the corpus analysis research

methodology and the resulting empirical findings from three separate exploratory studies

involving human tutors and novice computer science students.

 4

The results to date suggest that the motivational components of control and confidence

(Lepper, Woolverton, Mumme, & Gurtner, 1993) may influence computer science learning

interactions in important ways, and that these motivational components may themselves be

influenced to the student’s benefit through specific instructional strategies.

This article is structured as follows. Background on the role of motivation and tutorial

dialogue from related literature is discussed in Section 2. Section 3 presents the design of three

exploratory research studies and describes the structure of the resulting data from human-human

tutoring of introductory computer science. Section 4 describes the research methodology applied

to the data sets of tutorial dialogue. Section 5 presents the results with subsections devoted to the

motivational components of confidence (Sections 5.1 and 5.2) and control (Section 5.3).

Discussion follows in Section 6, and conclusions are presented in Section 7.

2. Background

The overwhelming majority of computer science education literature has focused on the purely

cognitive aspect of learning (Machanick, 2007). This trend is not surprising given the alluring

parallels between cognitive learning models and the basic functions of computing that are

fundamental to the discipline. For instance, the theoretical framework known as constructivism

has been embraced for its insights into CS learning processes (Ben-Ari, 1998), and direct

analogies are sometimes made between the constructivist view, in which students build and

“debug” knowledge, and the activities involved in computer programming. Constructivism and

other purely cognitive models of learning (e.g., Bloom, 1956) are valuable in understanding

many phenomena surrounding the teaching and learning of computing. However, these models

may not capture some important facets of the computer science learning process.

 5

As Machanick (2007) observes, there exist phenomena in CS education that are not

readily explained by current purely cognitive frameworks. He proposes that social

constructivism, a theoretical framework that is gaining acceptance in the broader education

community, might offer explanations for the observed effectiveness of some approaches such as

peer assessment and apprenticeship-style teaching (Guzdial & Tew, 2006). The potential

insights afforded by social constructivism stem from the theory’s foundational tenets that

learning has important social roles, and that communication is key to defining the knowledge of

a student. Evidence of the importance of communication in computer science learning

environments has been noted by Barker and Garvin-Doxas (2004), who observe that the type of

discourse that occurs in a computing classroom has far-reaching effects on students. Further

results on the importance of communication and the social role of learning have emerged from

research in the context of pair programming (Slaten, Droujkova, Berenson, Williams, & Layman,

2005) and non-majors learning to program (Wiedenbeck, 2005).

One instructional setting that has been proven effective in building knowledge and is rich

in communication between student and instructor is one-on-one human tutoring. Long studied as

an exemplary way to facilitate mastery of a subject (e.g., Bloom, 1984), tutoring has been the

setting for recent work in CS education research, for example, in investigating how students plan

the solution to a programming problem (Lane & VanLehn, 2005). When the conversation

between tutor and student is captured, a corpus of tutorial dialogue is created that constitutes a

record of the tutorial interaction. Tutorial dialogue has been studied in depth by researchers from

disciplines including cognitive psychology and artificial intelligence. Foundational results in this

area have revealed, for example, that tutorial dialogues often exhibit a regular, iterative structure

that unfolds as tutor and student work through problems together (Graesser, Person, & Magliano,

 6

1995). In addition, extensive work has shown the importance of interaction as a source of

effectiveness for one-on-one tutoring (Chi, Siler, Jeong, Yamauchi, & Hausmann, 2001).

Finally, recent results suggest the effectiveness of tutoring sessions depends on the preparedness

of the students at the outset (VanLehn et al., 2007).

Because of the completeness of the instructional record created by controlled tutorial

dialogue studies, it is possible to observe and make inferences about the fine details of student

activities. Patterns observed in the exploratory studies presented here indicate that student

motivation is an important facet of computer science learning. The findings suggest several

hypotheses regarding the ways in which particular approaches may be implemented in practice to

increase the motivational effectiveness of instructional dialogue in computer science.

Motivation, which refers to a student’s impetus for engaging in learning activities, has

received attention in the general education research community for at least two decades (e.g.,

Cameron & Pierce, 1994; Deci, Koestner, & Ryan, 2001; Keller, 1983). Recently, motivating

the student has also been identified as a component of a complete conception of teaching

computer science (e.g., Lister et al., 2007). Student motivation has also been considered in

several recent empirical studies in computer science education. For example, Soh, Samal, &

Nugent (2007) included attitudinal variables for student self-efficacy and motivation as part of a

data collection effort to assess the effectiveness of a redesigned computer science curriculum.

Additionally, pair programming researchers recognize motivation as an important facet when

measuring the impact of pair programming in educational settings (e.g., Williams, Wiebe, Yang,

Ferzli, & Miller, 2002). These studies show an increased awareness of the importance of

motivation in the computer science learning process.

 7

In much of the existing computer science education research, measures of motivation are

taken at the beginning and end of an academic term in order to assess the impact of the

instructional approach utilized during the term. Tracking changes at this granularity has proven

a useful research approach. However, studying student motivation at a finer granularity, for

instance, over the course of a single programming assignment, can complement the coarser

granularity approach generally undertaken to date. For example, Wolfe (2004) considers student

motivation at the level of a single programming assignment, observing that the rhetoric used in

problem descriptions does matter. Wolfe’s concrete finding is that programming assignments

may be more successful if they emphasize real-world purpose and human factors. This kind of

contribution is made possible by studying student motivation at a finer granularity than over

entire academic terms.

The study of human tutoring provides a means through which student motivation can be

examined closely. In this setting, instructional strategies for motivation can be examined as they

naturally occur, and the impact of specific approaches can be measured at the level of individual

students. Lepper et al. (1993) studied the tactics of expert human tutors in various academic

domains to inform a theory of how teachers take motivation into account while instructing

students. They posit that four dimensions of motivation can be influenced to enhance

instruction: control, curiosity, challenge, and confidence. This work provides a theoretical

framework for investigating human-human tutoring and emphasizes the importance of fine-

grained motivational analysis even down to the dialogue turn level.

This article reports on three exploratory tutorial dialogue studies we conducted to

investigate relationships between student learning, motivation, and specific dialogue phenomena

that occur during tutoring. Results speak to the motivational components of control and

 8

confidence as they manifest during tutoring sessions centered around the task of solving an

introductory programming exercise. Each study involved naturalistic interaction between

introductory computer science students and human tutors of varying experience levels. The

instructional interaction took place over the course of approximately one hour while students

worked to solve a programming exercise. The studies were conducted in a controlled setting so

that all interaction between student and tutor could be logged for analysis. The exploratory

findings suggest that student motivation is an important component of the processes by which

students come to understand computing.

3. Design of Exploratory Studies

This section describes the three tutoring studies. Study I was conducted in Fall semester 2006,

Study II was conducted in Spring semester 2007, and Study III was conducted in Spring semester

2008.

3.1 Participants

Students were volunteers who were enrolled in an introductory university-level computer science

course called “Introduction to Computing – Java” at the time of the study. This course is the first

in a series of computing courses offered at the university. Study I involved 35 participants,

Study II involved 43, and Study III included 61 participants. Students were compensated for

participation through a small amount of class credit that varied according to instructor

preference. Almost all students were of traditional college age, and, as in the larger class

populations, the majority of participants were male. Not all participants planned to major in

computer science; enrollment in the introductory computer science course, and therefore

participation in the studies reported here, included students whose declared majors were

 9

mechanical, electrical, and computer engineering. The studies began in the eighth week of the

semester. Studies I and II each spanned one week, and Study III spanned two weeks.

3.2 Tutors

Study I utilized six tutors: four graduate students, one female and three male, and two upper-

division undergraduate students, both male. Study II used fourteen tutors: twelve graduate

students, two female and ten male, plus two upper-division male undergraduate students. Study

III involved the two most effective tutors from the prior studies, that is, the tutors who had the

highest average student learning gains across Study I and Study II. The tutors in Study III were

one female graduate student and one male upper-division undergraduate student. All tutors

across the studies were between the ages of 19 and 30. All tutors had a minimum of one

semester’s experience as a tutor or teaching assistant. Several tutors in Study II also had

extensive experience as classroom instructors. None of the tutors were involved as instructors or

teaching assistants with the course from which the participants were drawn. Neither students’

nor tutors’ identities were revealed before, during, or after the tutoring sessions.

The tutor orientation consisted of a problem-solving session in which all of the tutors met

to work through alternate solutions to the exercise in order to refresh tutor knowledge and

establish a breadth of solutions to the programming problem. In addition, tutors were shown the

student instruction video in order to familiarize them with the assumed starting knowledge of the

student regarding the software being used. The student instruction video also served as the tutor

orientation to the software. Tutors were not instructed to use specific instructional approaches or

tutorial strategies because the intent was for each tutor to use his or her own strategies to

accomplish the goal of helping students complete a programming exercise while ensuring that

students developed an understanding of the general concepts used in the solution. In this way,

 10

the data represent a sampling of naturalistic human-human tutoring for introductory computer

science.

3.3 Problem-Solving Task

The tutorial dialogue was centered around a problem-solving task. For this task, Studies I and II

used a programming exercise taken from the standard laboratory manual for the course

(Appendix A). In these studies, students attended the tutorial session in lieu of attending their

regularly scheduled structured lab for the week in order to ensure that students had not already

completed the programming exercise when they arrived to work with the tutor. The

programming exercise focused on the use of array data structures and loop constructs. Students

were provided a partial solution that included an (initially empty) graphical display of the

generated results. Students were required to complete three code modules to solve the

programming problem. Studies I and II were time-controlled at 50 and 55 minutes, respectively.

Most students completed two of the three methods during the allotted tutoring time. Based on

tutor feedback from the previous two studies which indicated the programming problem was

unnecessarily confusing for students, Study III used a slightly simplified programming exercise

(Appendix B) that was designed with social relevance in mind, a property thought to be

implicitly motivational to students (Layman, Williams, & Slaten, 2007). As in the previous

studies, the programming exercise focused on using array data structures and loop constructs to

complete three modules. In Study III, rather than controlling for time, students were permitted to

work until completion of the programming exercise.

 11

3.4 Procedure

Upon arrival, participants completed a pair of written instruments consisting of survey items on

the student’s motivation to study computer science, including the student’s confidence

(Appendix C). The confidence components of these motivation surveys were adapted from the

Domain-Specific Self-Efficacy Scale (Bandura, 2006).

 In Study I, this data was the first to be collected for each participant; in Studies II and III,

participants were also asked to complete an electronic survey containing several demographic

and psychometric instruments prior to arriving for the study. The demographic instrument

collected students’ ethnicity, expected graduation date, and major. Psychometric instruments

included the Achievement Goals Questionnaire (Elliot & McGregor, 2001) and the Interpersonal

Reactivity Index (Davis, 1983). These instruments were not analyzed for the results reported

here.

 The pretests and posttests (Appendix D) were handcrafted and evolved between studies in

an effort to make the questions more sensitive to differences in learning that occurred over the

course of the tutoring sessions. The tests for Studies I and II underwent no external evaluation;

for Study III, the pre/post test underwent formal review by a panel of three independent subject

matter experts with experience in teaching introductory computer science.

 Upon completing the written instruments, students were seated at a computer where they

watched a short instructional video to familiarize them with the software that would be used.

Upon completion of the instructional video, students worked remotely with a tutor while

planning and implementing the solution to the programming exercise. When the tutoring session

reached its conclusion, a paper-based post-survey and posttest were administered whose items

were analogous to the pre-survey and pretest.

 12

3.5 Tutorial Interaction

In order to fully capture the interaction between student and tutor, students reported to a separate

room from their tutor and worked remotely with the tutor using software designed to facilitate

real time remote collaboration on programming projects (Boyer, Dwight, Fondren, Vouk, &

Lester, 2008). Using this software package, the student and tutor engaged in dialogue through a

textual interface similar to mainstream chat messaging programs (Figure 1). As students

constructed Java code in the Eclipse IDE (The Eclipse Foundation, 2009), an Eclipse plug-in

transmitted the student’s problem-solving actions to the tutor in real time. The tutor was thus

able to observe student problem-solving actions (e.g., programming, scrolling, executing)

continuously throughout the tutoring session. Tutors were limited to viewing students’

programs; only students could edit programs. All interactions between the student and tutor, as

well as all student programming actions, were logged to a database for further analysis.

Tutors and students were not aware of each other’s identity. No individual characteristics

(including gender, ethnicity, age, or level of preparedness) were disclosed to the tutor or the

student. This restriction was communicated to all participants ahead of time. In the rare event

that students inquired as to the tutor’s identity, tutors were instructed to redirect the student with

a response such as, “Sorry, we’re supposed to talk only about the programming exercise.” The

need for this redirection arose infrequently in the studies, but was necessary to ensure that

student and tutor assumptions would be controlled to the fullest extent possible.

In Study I, there were no restrictions placed on the construction of dialogue messages;

that is, while one user actively constructed a textual message, the other user was also permitted

to construct and send messages. This design choice was made because of its consistency with

the interface design of commercial instant messaging platforms familiar to the student

 13

population. In these instant messaging platforms, if one user completes a new message (possibly

starting a new topic) while the other user is typing a response to the previous topic, the

chronological record of dialogue can appear inconsistent with respect to the conversational

structure. Human users deal with this phenomenon readily as the textual dialogue unfolds in real

time; however, the situation gives rise to analysis challenges because researchers must

“untangle” the logs manually before analysis. To address this issue, the dialogue interface was

modified for Studies II and III to enforce strict turn-taking. When a user was actively

constructing an utterance in the textual dialogue interface, the other user was not permitted to

construct an utterance. However, the student was permitted to continue working in the problem-

solving window regardless of the status of the textual dialogue interface.

Figure 1: Tutorial dialogue and problem-solving interface

 14

4. Methodology

Corpus analysis is a research methodology commonly used in computational linguistics

(Jurafsky & Martin, 2008). The approach involves first obtaining a body of text called a corpus

and then marking this text for features that are not explicitly present on its surface in a process

called annotation. The marks that are applied are often referred to as tags. In an effort to

describe the corpus in a concise way or to establish relationships between qualities in the corpus

and other external entities of interest, the occurrences of the tags are often modeled using

quantitative methods. This section presents the results of applying this general corpus analysis

methodology involving two different levels of annotation: dialogue act annotation, which

involves marking each utterance with its intended purpose (e.g., question, feedback), and

initiative annotation, which involves marking larger sections of the dialogue to indicate which of

the participants was leading the dialogue at each point (e.g., tutor or student).

4.1 Data

The data traces generated by these studies include student programming actions at the keystroke

level, as well as all textual dialogue utterances between participants. Each of the three studies

yielded a chronological log with over five thousand dialogue moves and tens of thousands of

student programming actions. These data constitute a task-oriented corpus of tutorial dialogue

to which widely-used corpus analysis techniques, beginning with corpus annotation, were

applied. Through the process of annotation, the raw corpora were transformed into meaningful

representations of the tutoring interactions. The remainder of this section describes the

annotation schemes.

 15

4.2 Dialogue Act Annotation

Employed in Studies I and II, dialogue act annotation involves marking each dialogue move with

a tag summarizing the utterance’s purpose (e.g., greeting, questioning, answering, disagreeing).

For example, in tutorial dialogue, examples of common dialogue acts include asking questions

(e.g., “What kind of variable should I use?”), making assessments of knowledge (e.g., “I don’t

know how to declare an array.”), and acknowledging a previous statement (e.g., “Got it.”).

Because there is no gold standard for annotating tutorial dialogue, our set of dialogue act tags

was adapted from annotation schemes from the dialogue analysis literature to capture the salient

characteristics of the corpora. Some dialogue acts were taken directly from a set applied in the

domain of qualitative physics (Forbes-Riley, Litman, Heuttner, & Ward, 2005), while other tags

were inspired by a more expansive set of tags created for general natural language dialogue

(Stolcke et al., 2000). Because a single utterance might communicate cognitive, affective, and

motivational content, the set of dialogue act tags was divided into two channels: an

affective/motivational channel and a cognitive channel.1 Table 1 illustrates the dialogue act tags

as applied during Study II; Study I involved further distinctions within the Question tag and the

Feedback tags, but these distinctions were not made for Study II.

4.3 Problem-Solving Act Annotation

The corpora contain a variety of problem-solving actions taken by the student. These

programming actions include opening and closing files, typing new text in the program editor

window, and scrolling through program files. Most of these categories of programming actions

were sparse and were therefore eliminated from analyses, leaving the two most common

1 The tagging scheme was divided into cognitive and affective/motivational channels. Although the analysis
presented here focuses only on the motivational tags in the affective/motivational channel, the entire tagging scheme
is presented for completeness.

 16

Table 1: Dialogue Act Tagging Scheme for Study II

 17

programming actions of typing Java code in the programming interface and scrolling in the

program editor. The events were automatically tagged using a heuristic for correctness: if a

problem-solving action was a programming keystroke that survived until the end of the session,

this event was tagged promising, to indicate it was probably correct; if a problem-solving act was

a programming keystroke that did not survive until the end of the session, the problem-solving

act was tagged questionable. Both of these heuristics are based on the observation that in this

tutoring context, students solved the problem in a linear fashion and tutors did not allow students

to proceed past a step that had incorrect code in place. Finally, periods of consecutive scrolling

were also marked questionable because in a problem whose entire solution fits on one printed

page, scrolling was usually conducted in irrelevant source files included to support graphical

output of the programming exercise. Because the student’s solution did not interface directly

with these source files, scrolling through them was almost uniformly not a productive problem-

solving step. This automatic tagging for correctness was applied for the purposes of Study II.

4.4 Annotation for Initiative

While dialogue act annotation involves marking a corpus at the level of dialogue turns, another

useful type of annotation entails marking the higher-level structure of the dialogue. Tags at the

dialogue structure level can span many individual dialogue acts. Since the corpora consist of

dialogue turns interleaved chronologically with student problem-solving actions, dialogue

structure tags span contiguous sections of textual dialogue and student problem-solving. One

important aspect of dialogue structure involves initiative, that is, which speaker has control and

direction of the conversation at a given point in time. This level of annotation was performed in

Study III. The tutorial dialogue corpora lent themselves readily to two tags for initiative:

Student-Initiative and Tutor-Initiative.

 18

In Student-Initiative mode, the student maintains control and direction over the problem-

solving effort. Student-Initiative mode is characterized by the following activities:

• The student states his/her plan and (optionally) asks the tutor for feedback.

• The student reads the problem description or constructs a portion of the actual

solution independently, as indicated by no dialogue exchanged while the student is

conducting these problem-solving activities.

• The student asks content-based questions (e.g., “I should start this index at 0, right?”)

as opposed to content-free questions (e.g., “What do I do now?”).

In Tutor-Initiative mode, the tutor directs the problem-solving effort. Because the user

interface does not allow tutors to edit the students’ solutions, Tutor-Initiative mode does not

involve the tutor actively constructing the problem solution. However, the tutor often used the

textual dialogue interface to actively guide and direct the student to take very specific problem-

solving actions. Tutor-Initiative mode includes the following activities:

• The tutor offers unsolicited advice or correction.

• The tutor lectures on a concept.

• The tutor explicitly suggests the next step in problem solving.

• The tutor poses questions to the student.

To illustrate the initiative modes, two excerpts are presented (Table 2). The first excerpt

illustrates Student-Initiative mode. In this excerpt, the student asks a content-based question

indicating he knows the problem lies in a return statement. The tutor provides an answer, which

the student acknowledges. Finally, the student spends five uninterrupted minutes coding part of

the problem solution. Lengthy periods of independent student work are common in Student-

Initiative mode. The second excerpt illustrates Tutor-Initiative mode. In this excerpt, the tutor

 19

gives unsolicited advice and asks questions of the student. The student spends a brief time

repairing the problem solution, and the tutor once more provides unsolicited feedback. As

illustrated in this excerpt, brief periods of student work interspersed with frequent dialogue are

common in Tutor-Initiative mode.

5. Results

This section presents results from three tutorial dialogue studies that employ a mixed methods

research methodology: data sources include both quantitative data gained from survey responses

Table 2. Excerpts of Student-Initiative and Tutor-Initiative modes from Study III

 20

and test scores (Section 3.4), along with qualitative data resulting from the interpretation

(through tagging) of textual dialogues. A mixed methods approach is appropriate when the

research questions involve why certain quantitative results have been observed (Creswell &

Clark, 2006). In the current work, tutorial dialogue structure is hypothesized to explain, at least

in part, quantitative results involving learning and confidence.

 The first result deals with the ways in which human tutors naturally adapt to student

characteristics such as self-confidence. The second set of findings suggest that specific types of

tutorial feedback may be associated with different student confidence outcomes, while the third

result deals with learning and confidence as they relate to the level of initiative taken by the tutor

during the tutoring sessions. Together, these exploratory results inform hypotheses regarding the

role of student motivation, and how instructional strategies might address it, in computer science

learning.

5.1 Study I: Tutorial Adaptation to Student Confidence

Self-confidence is an important component of student motivation. The results from Study I

suggest that tutors may adapt their strategies in specific ways based on student confidence.

Although no student characteristics were explicitly revealed to the tutors, the dialogue structure of

students with low self-confidence differed significantly from that of students with high self-

confidence.

The corpus from Study I consists of 5,034 dialogue acts: 3,075 tutor turns and 1,959

student turns. The entire corpus was manually annotated for dialogue acts by a single researcher,

with a second researcher annotating a subset of 969 total utterances. An agreement study to

evaluate the consistency of the coding scheme and its application to the corpus found a Kappa

agreement statistic of 0.75, indicating reasonable inter-rater reliability (Cohen, 1960). In order to

 21

compare tutorial sessions, the relative frequency of each dialogue act was computed as the ratio of

the number of occurrences of that dialogue act to the total number of dialogue acts in the session

(Boyer, Vouk, & Lester, 2007).

 Overall, the tutoring sessions in Study I were effective: on average, students scored 13%

higher on the posttest than the pretest. This average learning gain is statistically significant

(p<0.0001 using a t-test with 34 DF, SD=0.12) and the effect size is 1.08. For further analysis,

students were divided into two groups based on the self-reported confidence score. This measure

was obtained from a pre-survey item in which students were asked to rate their own confidence, on

a scale of 0-100, that they could complete a simple programming exercise on their own.

Students were classified as being in one of two groups, highly-confident or less-confident,

according to whether the self-reported confidence level of that participant fell above or below the

median reported confidence level of all participants.

 Some dialogue acts occurred with significantly different relative frequencies between the two

confidence groups. The relative frequency of the following dialogue acts was significantly

different between the highly-confident and less-confident groups:

• Students in the highly-confident group made more declarative statements, or assertions,

than students in the less-confident group (p=0.044, t-test with unequal variances, 22.8

DF, SDhigh=0.04, SDlow=0.01).

• Tutors paired with less-confident students gave more negative feedback (p=0.021, t-

test with unequal variances, 15.7 DF, SDhigh=0.0009, SDlow=0.0054) and made fewer

acknowledgements (p=0.05, t-test with unequal variances, 21.9 DF, SDhigh=0.03,

SDlow=0.008) than tutors paired with highly-confident students.

 22

The relative frequencies of other dialogue acts showed no significant difference between the groups.

These findings suggest the hypothesis that differing levels of student self-confidence are

associated with structural differences in the tutor-student interaction. This result highlights the

importance of further study of these phenomena.

5.2 Study II: Impact of Corrective Feedback on Student Motivation

Although the learning gain results indicate that the tutoring sessions were effective, Study I did

not indicate which tutorial adaptations might be more or less effective from either a cognitive or

a motivational perspective. To address this limitation, Study II (Boyer, Phillips, Wallis, Vouk, &

Lester, 2008) examined the impact of certain cognitive and motivational corrective strategies

focusing on three categories of dialogue acts utilized by tutors. The motivational strategies of

praise and reassurance were compared with several types of cognitive feedback to identify

relationships with student cognitive and motivational outcomes. In order to focus the analysis,

these strategies were analyzed when they were used immediately following plausibly incorrect,

or questionable, student problem-solving actions.

 The corpus from Study II consists of 4,864 dialogue moves: 1,528 student utterances and 3,336

tutor utterances. All dialogue moves were annotated for dialogue acts using the dialogue act tag set

shown in Table 1. As in Study I, an agreement study was conducted. A second researcher

annotated 1,418 utterances from the corpus, and the resulting Kappa agreement statistic was 0.76,

indicating reasonable inter-rater reliability. In addition to dialogue act tagging, all student

programming actions were automatically annotated using the problem-solving annotation described

earlier. Of the 3,336 tutor utterances, 1,243 occurred directly after a student problem-solving action

that had been tagged questionable. Because these utterances immediately followed student action

 23

that presumably warranted correction, this subset of tutorial utterances served as the basis for

comparing corrective tutorial strategies.

 Overall, the forty-three tutoring sessions were effective, yielding a mean 5.9% learning gain

from pretest to posttest across all participants. This difference is statistically significant (p=0.038, t-

test with pooled variance, 42 DF, SD=0.18), though displaying a modest effect size of 0.33. For

this study, cognitive benefit as well as motivational benefit were considered. Students rated their

own self-confidence regarding the subject matter significantly higher, 12.1% on average, after the

tutoring session than before (p=0.0021, t-test with pooled variance, 42 DF, SD=0.24) with effect

size 0.5.

As in Study I, the student outcomes of learning gain and self-confidence gain for each

participant were partitioned into binary categories of High and Low based on the median gain

scores of all participants. Multiple logistic regression was then applied to determine whether a

relationship existed between corrective tutorial strategy and student outcomes.

 The results suggest that different types of tutorial feedback are related to different

cognitive and motivational student outcomes. The analyses revealed the following results:

• Purely cognitive feedback was more often associated with high student learning gain

than cognitive feedback that had an additional explicit component of praise. After

accounting for the effects of pretest score and incoming confidence rating by

including these as predictors in a logistic regression model with learning gain as the

response variable,2 observations in which the tutor used cognitive feedback plus

praise were associated with 40% lower likelihood of high learning gain than

2 These variables are included as predictors in all logistic regression models reported in this section in order to
control for the influence of incoming knowledge level and confidence on the outcomes.

 24

observations in which the tutor used purely cognitive feedback (p=0.001, significant

logistic regression coefficient).

• Purely motivational dialogue moves, such as praise or reassurance, were associated

with a greater gain in self-confidence among initially less-confident students.

Observations in which the tutor employed a standalone motivational act were 300%

as likely to be in the high confidence gain group as observations in which the tutor

employed a purely cognitive statement or a cognitive statement combined with

encouragement (p=0.039, significant logistic regression coefficient). On the other

hand, these purely motivational acts on the part of the tutor were associated with 90%

lower odds of high confidence gain in initially highly-confident students (p=0.04,

significant logistic regression coefficient).

• The choice of tutor positive cognitive feedback was associated with 190% increased

odds of the student experiencing high self-confidence gain compared to when tutors

chose any other type of cognitive feedback (p=0.0057, significant logistic regression

coefficient).

These results suggest that although some tradeoffs may exist between maximizing

learning gains and strategies sometimes used to motivate the student, it may be possible

to choose instructional strategies that enhance student motivation without sacrificing

cognitive outcomes.

5.3 Study III: Student Control

A healthy level of student autonomy is thought to support increased motivation (e.g., Dickinson,

1995). For this reason, student control during a tutoring session may be an important

motivational component. One way to adjust student control in a one-on-one tutoring scenario is

 25

for the tutor to take varying degrees of initiative. Results presented in this section explore

whether there was difference in learning gains (measured by posttest score minus pretest score)

or confidence gains between groups of students paired with tutors who naturally took

significantly different levels of initiative.

 Study III (Boyer, Phillips, Wallis, Vouk, & Lester, 2009) utilized the two most effective

tutors from the prior two tutoring studies. There were sixty-one tutoring sessions distributed

approximately equally between the tutors. From these sessions, fifteen were randomly selected

for each tutor yielding a total of thirty sessions to be annotated for initiative using the annotation

scheme described earlier.

 Each Student-Initiative and Tutor-Initiative tag was associated with a duration of time

over which that instance of the tutoring mode occurred. The sum (in minutes) of all Tutor-

Initiative periods in a given tutorial session divided by the total time elapsed during the session

yielded the percentage of the tutoring session that was spent in Tutor-Initiative mode. One tutor,

referred to as the moderate tutor, took the initiative 55% of the time on average. The proactive

tutor took the initiative an average of 73% of the time, constituting a significant difference in

approach (p=0.029, t-test with pooled variances, 28 DF, SD=0.21). While one possible

explanation for this difference could be that, despite the randomized assignment of students to

tutors, the moderate tutor may have been assigned a group of students with a different level of

preparedness than the proactive tutor, analysis of pretest scores suggests this confounding factor

was not present. Average student pretest scores were 79.5% for the moderate tutor and 78.9%

for the proactive tutor, yielding no evidence of a difference in student preparedness between the

two treatment groups for the subset of students considered in the initiative annotation (p=0.764,

t-test with pooled variances, 28 DF, SD=0.19).

 26

 For each participant, the cognitive outcome of learning gain was calculated as posttest

score minus pretest score. The mean learning gain across each set of fifteen annotated student

sessions was 6.9% for the moderate tutor and 6.0% for the proactive tutor, yielding no evidence

of improved learning gains associated with a particular level of student control (p=0.895, t-test

with pooled variances, 27 DF, SD=0.09).

It is reasonable to assume that the thirty sessions were representative of the larger data set

in terms of tutor initiative because the subset was selected at random. Therefore, it is meaningful

to consider all learning gains and assume each tutor took a sufficiently uniform approach across

all tutoring sessions. The mean learning gain for all students tutored with the moderate approach

was 6.9%, while the mean learning gain for the proactive tutor was 8.6%. In this larger set of

learning gains, there is still no evidence that one tutor was more or less effective than the other

(p=0.569, t-test with pooled variances, 58 DF, SD=0.11).

Student self-confidence gain was measured as the difference between post-survey and

pre-survey score on an item that asked students to rate their confidence, on a scale of 0-100, in

having the ability to learn the necessary course material for their introductory computer science

class. A significantly different average confidence gain was found between student groups

paired with the two tutors. Students who worked with the proactive tutor had an average

confidence gain of less than one point from pre-survey to post-survey. On the other hand,

students paired with the moderate tutor had an average confidence gain of more than six points,

which is significantly higher (p=0.047, t-test with pooled variance, 28 DF, SD=6.5). This

finding suggests the following hypothesis: within the two levels of tutor initiative considered

here, affording the student more control may yield motivational benefit without sacrificing

cognitive outcomes.

 27

6. Discussion

Extensive research, including many active projects by computing education researchers and

practitioners, are providing an emerging picture of the cognitive issues that arise on a student’s

path toward understanding computing. These results give rise to interventions aimed at

addressing misconceptions, repairing mental models, and facilitating algorithmic thinking. In the

same way, an understanding of student motivation may guide instructional interventions that

enhance student engagement and encourage persistence in learning computing. The instructional

strategies presented here were observed in naturalistic human-human tutoring sessions in

introductory computer science. The task-oriented tutorial sessions involved experienced human

tutors and novice computer science students who were working to solve a programming exercise.

The tutors and students communicated remotely through textual dialogue. Textual

communication is representative of much of the instructional discourse that takes place in

today’s computer science learning environments; therefore, results concerning the instructional

strategies used in remote textual human-human tutoring are meaningful for other areas such as

online message boards, correspondence with teaching assistants, and the design of educational

systems.

6.1 Discussion of Related Work

The results reported here suggest that structural differences in tutorial dialogue can be observed

depending on whether students display high or low initial confidence related to the computing

task at hand. In addition, findings suggest the hypothesis that certain instructional strategies,

such as positive feedback, are associated with increased student confidence gains. This result

reinforces prior research suggesting that during an introductory programming course, in order to

 28

increase self-efficacy, students benefit from frequent small successes and feedback

(Ramalingam, LaBelle, & Weidenbeck, 2004). In the tutorial case, the reason for providing

positive feedback even following potentially incorrect student problem-solving action may be

that the positive feedback can be followed by correction, and this indirect correction is an

example of a potentially beneficial politeness strategy in which the tutor avoids direct

confrontation regarding a student’s mistake (e.g., Porayska-Pomsta & Pain, 2004; Wang,

Johnson, Rizzo, Shaw, & Mayer, 2005).

The final study involved analysis of tutorial dialogue structure to investigate the impact

of instructor initiative. The study found that students who were allowed more control

experienced higher gains in self-confidence, with no significant difference in learning gain. This

is an important preliminary finding, since an increased sense of control is hypothesized to be

beneficial for student motivation (Dickinson, 1995). While some motivational and cognitive

goals are known to be at odds with one another (e.g., Lepper, Woolverton, Mumme, & Gurtner,

1993), future work on student self-confidence could clarify how levels of student control can

enhance motivation without sacrificing cognitive outcomes.

6.2 Threats to Validity

The three studies presented here are exploratory in nature and, as such, are not intended to

confirm specific hypotheses regarding the impact of instructional strategies on student

motivation. The primary limitation of the studies stems from two sources: 1) the absence of

control groups, and 2) the abundance of factors that were allowed to vary across treatments. It is

plausible that factors other than those explored here are responsible for the association between

tutorial strategies and student motivation. However, the work presented here has revealed

hypotheses that can inform future controlled experiments.

 29

 Another threat to validity involves the potential error when applying the heuristic for

problem-solving action correctness in Study II. Based on the automatic application of a small set

of rules, the tags of Questionable or Promising with regard to student actions may not

correspond well to the judgment the tutors made in real time. This confound is a potential source

of error whose magnitude cannot be assessed with the data available. Future studies will feature

manual tagging of the student problem-solving actions to avoid the challenges presented by the

rule-based heuristic tags.

 Finally, handcrafted tests and surveys comprise the sources of quantitative data in this

mixed methods research. For Studies I and II, the tests did not undergo any formal validation,

and for Study III the evaluation was limited to review by a panel of three subject matter experts.

The surveys, while based on widely-used instruments to measure student self-confidence, have

not themselves undergone validation studies.

7. Conclusion

One-on-one human tutoring is a viable research tool for studying fine-grained instructional

approaches and their effects on individual students. Our findings suggest that in computer

science education, instructional strategy may have an appreciable effect not only on purely

cognitive outcomes such as learning gain, but also on important motivational outcomes such as

self-confidence. These results, which are based on three separate exploratory studies of

naturalistic human-human tutoring in introductory computer science, provide early clues as to

the impact of different instructional strategies on computer science students.

 Future work will involve integrating the corpora from the three separate studies. It is

likely that, to the extent these data sets can be considered homogeneous, combining them can

strengthen and clarify the results presented here. Another area for future work includes

 30

conducting focused experiments to test the hypotheses that emerged from these exploratory

studies. In future experiments, enhancements to the current methodology, such as manually

tagging student problem-solving actions, could strengthen the findings. In addition, other work

on the motivational components of curiosity and challenge (Lepper, Woolverton, Mumme, &

Gurtner, 1993) suggest that these aspects of student motivation should also be investigated along

with confidence and control in the context of computer science education.

8. Acknowledgements

The authors wish to thank the following for insightful discussions and support in preparing this

manuscript: Scott McQuiggan and the members of the Intellimedia Center for Intelligent

Systems at NC State University, Carolyn Miller, and Tiffany Barnes. Thanks to the software

development team of August Dwight and Taylor Fondren whose outstanding undergraduate

research projects resulted in the software that facilitated these tutoring studies, and to the

Realsearch Group at NC State University for their project development support.

 This work has been supported in part by the National Science Foundation through grants

REC-0632450, IIS-0812291, the STARS Alliance grant CNS-0540523, and an NSF Graduate

Research Fellowship. Any opinions, findings, conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of the National Science

Foundation. Support has also been provided by North Carolina State University through the

Department of Computer Science and the Office of the Dean of the College of Engineering.

 31

9. References

Bandura, A. (2006). Guide for constructing self-efficacy scales. In F. Pajares, & T. Urdan (Eds.), Self-

efficacy beliefs of adolescents (pp. 307-337). Greenwich, Connecticut: Information Age Publishing.

Barker, L. J., & Garvin-Doxas, K. (2004). Making visible the behaviors that influence learning

environment: A qualitative exploration of computer science classrooms. Computer Science

Education, 14(2), 119-145.

Ben-Ari, M. (1998). Constructivism in computer science education. Proceedings of the 29th SIGCSE

Technical Symposium on Computer Science Education, 257-261.

Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals. New

York: David McKay.

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as

one-to-one tutoring. Educational Researcher, 13(6), 4-16.

Boyer, K. E., Dwight, A. A., Fondren, R. T., Vouk, M. A., & Lester, J. C. (2008). A development

environment for distributed synchronous collaborative programming. Proceedings of the 13th

Annual Conference on Innovation and Technology in Computer Science Education, Madrid, Spain.

158-162.

Boyer, K. E., Phillips, R., Wallis, M., Vouk, M., & Lester, J. (2008). Balancing cognitive and

motivational scaffolding in tutorial dialogue. Proceedings of the 9th International Conference on

Intelligent Tutoring Systems, Montreal, Canada. 239-249.

Boyer, K. E., Phillips, R., Wallis, M., Vouk, M., & Lester, J. (2009). The impact of instructor initiative on

student learning through assisted problem solving. Proceedings of the 40th SIGCSE Technical

Symposium on Computer Science Education, Chattanooga, Tennessee. 14-18.

Boyer, K. E., Vouk, M. A., & Lester, J. C. (2007). The influence of learner characteristics on task-

oriented tutorial dialogue. Proceedings of the 13th International Conference on Artificial

Intelligence in Education (AIEd), Marina del Rey, California. 365-372.

Cade, W., Copeland, J., Person, N., & D'Mello, S. (2008). Dialog modes in expert tutoring. Proceedings

of the 9th International Conference on Intelligent Tutoring Systems, Montreal, Canada. 470-479.

Cameron, J., & Pierce, W. D. (1994). Reinforcement, reward, and intrinsic motivation: A meta-analysis.

Review of Educational Research, 64(3), 363.

Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T., & Hausmann, R. G. (2001). Learning from human

tutoring. Cognitive Science, 25(4), 471-533.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological

Measurement, 20(1), 37-46.

 32

Creswell, J. W., & Clark, V. L. P. (2006). Designing and conducting mixed methods research. Thousand

Oaks, California: Sage Publications.

Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional

approach. Journal of Personality and Social Psychology, 44(1), 113-126.

Deci, E. L., Koestner, R., & Ryan, R. M. (2001). Extrinsic rewards and intrinsic motivation in education:

Reconsidered once again. Review of Educational Research, 71(1), 1-27.

Dickinson, L. (1995). Autonomy and motivation: A literature review. System, 23(2), 165-174.

Elliot, A. J., & McGregor, H. A. (2001). A 2 x 2 achievement goal framework. Journal of Personality and

Social Psychology, 80(3), 501-519.

Forbes-Riley, K., Litman, D., Huettner, A., & Ward, A. (2005). Dialogue-learning correlations in spoken

dialogue tutoring. Proceedings of the 12th International Conference on Artificial Intelligence in

Education (AIEd), Amsterdam. 225-232.

Graesser, A. C., Person, N. K., & Magliano, J. P. (1995). Collaborative dialogue patterns in naturalistic

one-to-one tutoring. Applied Cognitive Psychology, 9(6), 495–522.

Guzdial, M., & Tew, A. E. (2006). Imagineering inauthentic legitimate peripheral participation: An

instructional design approach for motivating computing education. Proceedings of the Second

International Computing Education Research Workshop (ICER), Canterbury, United Kingdom. 51-

58.

Jurafsky, D., & Martin, J. H. (2008). Speech and language processing. Upper Saddle River, New Jersey:

Pearson.

Keller, J. M. (1983). Motivational design of instruction. In C. M. Reigeluth (Ed.), Instructional-design

theories and models (pp. 386-434) Hillsdale: Erlbaum.

Lane, H. C., & VanLehn, K. (2005). Teaching the tacit knowledge of programming to novices with

natural language tutoring. Computer Science Education, 15(3), 183-201.

Layman, L., Williams, L., & Slaten, K. (2007). Note to self: Make assignments meaningful. Proceedings

of the 38th SIGCSE Technical Symposium on Computer Science Education, Covington, Kentucky.

459-463.

Lepper, M. R., Woolverton, M., Mumme, D. L., & Gurtner, J. L. (1993). Motivational techniques of

expert human tutors: Lessons for the design of computer-based tutors. In S. P. Lajoie, & S. J. Derry

(Eds.), Computers as cognitive tools (pp. 75-105). Hillsdale, New Jersey: Lawrence Erlbaum

Associates.

Lister, R., Berglund, A., Box, I., Cope, C., Pears, A., Avram, C., et al. (2007). Differing ways that

computing academics understand teaching. Proceedings of the Ninth Australasian Conference on

Computing Education, 97-106.

Machanick, P. (2007). A social construction approach to computer science education. Computer Science

Education, 17(1), 1-20.

 33

Porayska-Pomsta, K., & Pain, H. (2004). Providing cognitive and affective scaffolding through teaching

strategies: Applying linguistic politeness to the educational context. Proceedings of the 7th

International Conference on Intelligent Tutoring Systems, Alagoas, Brazil. 77-86.

Ragonis, N., & Hazzan, O. (2008). Tutoring model for promoting teaching skills of computer science

prospective teachers. Proceedings of the 13th Annual Conference on Innovation and Technology in

Computer Science Education, Madrid, Spain. 276-280.

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-efficacy and mental models in learning to

program. Proceedingss of the International Conference on Innovation and Technology in Computer

Science Education (ITiCSE), Leeds, United Kingdom.

Rebolledo-Mendez, G., Boulay, B., & Luckin, R. (2006). Motivating the learner: An empirical evaluation.

Proceedings of the 8th International Conference on Intelligent Tutoring Systems, Jhongli, Taiwan.

545-554.

Slaten, K. M., Droujkova, M., Berenson, S., Williams, L., & Layman, L. (2005). Undergraduate student

perceptions of pair programming and agile software methodologies: Verifying a model of social

interaction. Proceedings of AGILE, Denver, Colorado. 323-330.

Soh, L. K., Samal, A., & Nugent, G. (2007). An integrated framework for improved computer science

education: Strategies, implementations, and results. Computer Science Education, 17(1), 59-83.

Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., Jurafsky, D., et al. (2000). Dialogue act

modeling for automatic tagging and recognition of conversational speech. Computational

Linguistics, 26(3), 339-373.

Tan, J., & Biswas, G. (2006). The role of feedback in preparation for future learning: A case study in

learning by teaching environments. Proceedings of the 8th International Conference on Intelligent

Tutoring Systems, Jhongli, Taiwan. 370-381.

The Eclipse Foundation. (2009). Eclipse home page., 2009, from www.eclipse.org

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A., & Rose, C. P. (2007). When are

tutorial dialogues more effective than reading? Cognitive Science, 31(1), 3-62.

Wang, N., Johnson, W. L., Rizzo, P., Shaw, E., & Mayer, R. E. (2005). Experimental evaluation of polite

interaction tactics for pedagogical agents. Proceedings of the 10th International Conference on

Intelligent User Interfaces, San Diego, California. 12-19.

Wiedenbeck, S. (2005). Factors affecting the success of non-majors in learning to program. Proceedings

of the First International Computing Education Research Workshop (ICER), Seattle, Washington.

13-24.

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In support of pair programming in the

introductory computer science course. Computer Science Education, 12(3), 197-212.

Wolfe, J. (2004). Why the rhetoric of CS programming assignments matters. Computer Science

Education, 14(2), 147-163.

 34

Appendix A

Programming Exercise for Studies I and II

The Problem:
For faster sorting of letters, the United States Postal Service encourages companies that send large
volumes of mail to use a bar code denoting the ZIP code. Using the skeleton GUI program provided for
you, you will complete this lab with code to actually generate the bar code for a given zip code.

More About Bar Codes:
In postal bar codes, there is a full-height frame bar on each end (and these are drawn automatically by the
program provided for you; you don't have to write code to draw these). Each of the five encoded digits is
represented by five bars. The five encoded digits are followed by a correction digit.

The Correction Digit
The correction digit is computed as follows: Add up all digits, and choose the correct digit to make the
sum a multiple of 10. For example, the ZIP code 95014 has sum of digits 19, so the correction digit is 1 to
make the sum equal to 20.

What’s Already Written?
You can see what parts of this program are already written by running the file Main.java. When you do,
you should see output like the image below, with a blank zip code slot. You can enter a zip code, and you
should see that no bar code is generated (except the first and last full bars which are required for all bar
codes).

 35

What’s Your Task?
Your job is to take this five-digit zip code and use it to generate a bar code. The PostalFrame class is the
one which handles this task. The three methods which you must complete are:
 extractDigits()
 calculateAndDrawCDigit()
 drawZIPCode()
For extractDigits(), you will need to add a private variable to the class which stores the zip code as
separate digits.

Some Helpful Information
- If you can’t remember how to do something with the software, please refer to the reference sheet

on your desk.

- This lab involves a package named postal. This package contains classes Bar, FullBar,

PostalBarCode, and SmallBar. The reason these classes are grouped into a package, is that the
classes of the postal package logically belong together to accomplish a task. Whenever you need
to use things from one package outside of that package, you just import the package. This has
already been done for you in Main and PostalFrame – you will see the statement import postal.*
at the top. In addition to code already provided, you will need to call methods in the
PostalBarCode class from your PostalFrame class to draw full and small bars.

- Each digit of the ZIP code and the correction digit are encoded according to the following table

(each digit has five bars -- a zero is a half bar and a one is a full bar). This scheme represents all
combinations of two full and three half bars.

Digit
0 1 1 0 0 0
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 1 0 0 0 1
8 1 0 0 1 0
9 1 0 1 0 0

 36

Appendix B

Programming Exercise for Study III

To help ensure the safety of their residents, the Waimea County
Emergency Response office is re-assessing their ambulance dispatch
system. A study has already been conducted to gather data about the
ambulance response times to 911 calls. You have been hired to analyze
this data and help the emergency response office answer some questions
about how quickly their ambulances are able to reach people in need.
You’ll be taking over for Maddie, the previous developer who was
recently promoted.

Maddie already completed the class called Ambulance.java, which is a
driver for the whole program (it contains the main method). She also completed AmbulanceGUI.java,
which is used for displaying the ambulance response times graphically. You just need to complete a few
methods in the AmbulanceData class in order to finish this project!

1. In the AmbulanceData class, you must complete the method plotTimes() so that all the ambulance
response times in the parameter array (arrayToPlot) are displayed on a graph. Maddie already
created the method outline with some comments, so you’ll just need to read her comments and fill
in the method.

Maddie had an intern draw a graph by hand for the response times. This way, you know what the
output of your program is supposed to look like. The x-axis is how many minutes an ambulance
took to respond, the y-axis is a count of how many of the response times in the data set took that
long. For instance, there were three ambulance responses that took 7 minutes.

2. The department is considering replacing its aging fleet with new ambulances. Because of the
county’s tight budget, these would be slightly slower ambulances than the current fleet but the

 37

county could afford more ambulances overall. The staff believe the effects of this change would
be:
- On all response times below 5 minutes, the new fleet would take 1 minute longer to respond.
- On all response times above 18 minutes, the new fleet would take 4 fewer minutes to

respond.
- Other response times would remain the same.
Complete the method newFleetProjections() which creates a new array of hypothetical response
times given the above effects of the new fleet. You will need to create a new array because you
must not overwrite the true response times in the original array.

3. There is more analysis work than Maddie originally thought, so one of your colleagues, Shannon,

is writing a set of methods that perform the statistical analysis so your group can give a detailed
report to the Waimea County authorities. Shannon’s code needs to be able to pass an array of
unsorted times to a sortArray method, and get back an array of sorted times. Write a method
called sortArray in the AmbulanceData class. The sortArray method should take an array of
doubles as a parameter, and return a sorted ascending version of the parameter array without
overwriting the contents of the original array.
 The next page has some details of how your sort method should work.

 38

Appendix C

Confidence and Attitude Survey from Study III

Please rate how certain you are that you can do each of the things described below by writing the
appropriate number.

Rate your degree of confidence by recording a number from 0 to 100 using the scale given below:

 0 10 20 30 40 50 60 70 80 90 100
Cannot do

at all
 Moderately

can do
 Highly certain

Can do

 Confidence

(0-100)
Learn Computer Science. ________

Learn CSC 116 course material. ________

Complete a simple programming exercise on my own. ________

Complete a challenging programming exercise on my own. ________

Complete a challenging programming exercise if I am in a lab where a
TA is available to help me.

Explain for-loops to others well. ________

Explain arrays to others well. ________

Explain method calls to others well. ________

Use for-loops in a programming exercise correctly and effectively. ________

Use arrays in a programming exercise correctly and effectively. ________

Make method calls in a programming exercise correctly and effectively. ________

Please rate the degree to which you agree or disagree with the following statements:
 Not At All Moderate Very Much

I usually enjoy CSC 116 course material. ○ ○ ○ ○ ○

I usually find CSC 116 exercises
challenging.

○ ○ ○ ○ ○

I understand for-loops. ○ ○ ○ ○ ○

I understand arrays. ○ ○ ○ ○ ○

I am experienced using the eclipse
development environment.

○ ○ ○ ○ ○

I am experienced with communicating
through typed instant messages.

○ ○ ○ ○ ○

 39

Appendix D

Pre/Post Test Excerpt from Study III

1. Write a chunk of Java code to accomplish each of these tasks:

a. Declare an array of integer type and give it an initial size of 100.

b. Test the ith element of the array you declared in part a of this question and print “true” if the

element is equal to 5 and “false” otherwise. Assume that i has already been declared and
initialized.

c. Set the ith element of the array you declared in part a of this question to be 5. Again, assume

that i has already been declared and initialized.

2. A separate class named MyClass defines a printValue method as follows:

public static void printValue(float x) {
 // function body here
 }

In the following PrintAllValues method you want to call the method MyClass.printValue
on every element of the array myArray. Fill in the blanks below to do this.

public void PrintAllValues() {
 float [] myArray = new float[20];

for (_____________;_____________;_____________) {
 MyClass.printValue(_____________);

}
}

3. Write a piece of Java code that prints “Cowabunga!” exactly 73 times. System.out.println can be used

to print the string.

4. In a Java program, an array named firstArray of type int has been created and initialized.

Write a line of Java code to create an array named secondArray that is the same size and same
type as firstArray. The contents of secondArray do not need to be initialized to be the same
as the contents of firstArray.

5. Complete the following Java method so that it returns the average of all the elements in the array

myArray.

 public double returnAverage(double [] myArray) {
 double average = 0;

 return average;
 }

